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1 Introduction

Voigtländer (2009) presented a semantic approach to bidirectionalization encompassing
an implementation in Haskell and paper proofs of its correctness. We want study the
process of formally expressing both the implementation and the correctness proofs in a
dependently-typed programming language.

To understand bidirectionalization, we look at the following definition and provide an
intuition afterwards.

Definition (lens laws) Let S, V be sets. A pair of partial functions get : S → V
and put : S × V → S is called bidirectional transformation or lens if the following two
properties hold whenever the applications are defined.

∀s ∈ S. put(s, get(s)) = s (GetPut)
∀s ∈ S, v ∈ V. get(put(s, v)) = v (PutGet)

In this context, the bidirectionalization task is to find a useful function put for a given
function get such that the lens laws are satisfied. The problem originates in a database
setting and was formulated by Bancilhon and Spyratos (1981). There S describes the
possible states of a database and get is a query to compute a view or partial representation
of the database relevant to a particular application. The view is externally changed and
put describes the process to record the update in the database. This process can be
visualized using the following diagram.

S V

S V

get

update
put

To illustrate the task, let us consider an example outside the database context where S
contains triples of numbers. An example get function maps (a, b, c) to a+ b. Two ways
to to turn it to a bidirectional transformation are the following functions.

put1((a, b, c), d) = (d− b, b, c)
put2((a, b, c), d) = (a, d− a, c)

It is not clear which of these is better and in general choosing the right bidirectional
transformation is application specific. On the other hand, the following two functions
violate in general the GetPut law.

put3((a, b, c), d) = (d− b, b, 0)

put4((a, b, c), d) = (d, 0, c)
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The law requires that if no change is applied to a view before handing it to put, the
original element of S should be retained, but put3 changes the third element of a triple
and put4 changes the other elements when d = a+ b. Similarly, the next function violates
in general the PutGet law.

put5((a, b, c), d) = (a, b, c)

The function fails to record the update by completely ignoring the view element. A valid
but useless bidirectional transformation is given by the last example for put.

put6((a, b, c), d) =

{
(a, b, c) if d = a+ b,
undefined otherwise.

It satisfies both lens laws by not being able to retain any update. Our attempt at a
bidirectionalization of our example get has been manual, but in general it should be
automatic. Ideally the need to write down a put function should be avoided altogether.
Instead, it should be computable from get.
A syntactic approach to bidirectionalization was presented by Foster et al. (2007).

The idea is to constrain the language used to express get functions and to combine
bidirectionalizations which are explicitly given for individual language primitives. Then
put can be computed from the definition of get.
The semantic approach we are going to examine was presented by Voigtländer. Here

the behavior of get is restricted using the type system of the functional programming
language Haskell. The type chosen to start with is [a] -> [a]. It describes polymorphic
get functions that transform homogeneous lists. In particular, such functions cannot
inspect or create elements of the content type a. Their behavior can be exhaustively
captured by positional descriptions. So the implementation given for put observes the
behavior of a get function on example inputs, such as lists of integers.
Being able to predict the behavior of functions based on past invocations is possible,

because Haskell functions behave like mathematical functions. They are side effect free.
This aspect facilitated proving the lens laws for the given implementation of put in Haskell.
The implementation will be reproduced in Section 1.1. Starting with that section, Haskell
knowledge is assumed.
Even though Haskell was useful for expressing put, it cannot be used to formalize the

proofs of the lens laws. For this purpose, we want to use Agda which is a descendant
of Haskell. It is implemented in and syntactically similar to Haskell. Both languages
are based on typed λ-calculi. The one in Agda is extended to allow values to occur as
parameters to types. We say that it supports dependent types. This mixing of types and
values enables us to encode properties into types. Thus the type checker is able to verify
the correctness of proofs. An introduction to the language is given in Section 2.

The main part of this thesis is to investigate how Agda can be applied to a real-world
scientific result. We will translate the implementation of put given by Voigtländer to
Agda and redevelop the proofs of the lens laws in parallel. Much of the work will go into
proving assertions that were previously assumed obvious, but need to be explained to
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Agda. Thus the result will gain in precision. In the process, we will explain how proofs
are developed and what assistance is provided by Agda.
Note that Voigtländer shows a bit more than the lens laws given above in terms of

definedness. Assuming that get is fully defined, the application of put used in GetPut
is shown to be defined. Since arbitrary applications of put as used in PutGet are not
necessarily defined, we give a sufficient precondition for successfully invoking put in
Section 6.

1.1 Bidirectionalization in Haskell

In this section, we will briefly examine the bidirectionalization method presented in
Voigtländer (2009). Apart from basic Haskell constructs, it uses the Data.IntMap library
in order to associate numbers with values.

fromAscList :: [(Int, a)] -> IntMap a
empty :: IntMap a
insert :: Int -> a -> IntMap a -> IntMap a
union :: IntMap a -> IntMap a -> IntMap a
lookup :: Int -> IntMap a -> Maybe a

IntMap.fromAscList turns a sequence of pairs into an IntMap. The integer keys are
expected to ascend. IntMap.insert extends an existing IntMap with a new key value
pair and possibly overwrites an existing association. IntMap.union is left-biased.
With this container in place, we can define a more careful variant of IntMap.insert.

It fails if the pair being inserted violates an existing association.

checkInsert :: Eq a => Int -> a -> IntMap a -> Maybe (IntMap a)
checkInsert i b m = case IntMap.lookup i m of

Nothing -> Just (IntMap.insert i b m)
Just c -> if b == c then Just m

else Nothing

The definition deviates from the original in using Maybe in place of Either. The Left
constructor was used in place of Nothing to transport an error message. We are dropping
error messages here, because we are only interested in verifying the lens laws.

With checkInsert, we can construct an IntMap from two lists by associating a number
from the first list with the value at the same index in the second list. The construction
fails when the lists have different lengths or when there are conflicting associations.

assoc :: Eq a => [Int] -> [a] -> Maybe (IntMap a)
assoc [] [] = Just IntMap.empty
assoc (i : is) (b : bs) = assoc is bs >>= checkInsert i b
assoc _ _ = Nothing

Again we changed the definition to use Maybe instead of Either with the same reasoning.
With these tools in place, we can proceed to examine the actual bidirectionalization

method. It is called bff which is a short form of “bidirectionalization for free”.
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bff :: (forall a. [a] -> [a])
-> (forall a. Eq a => [a] -> [a] -> [a])

The first parameter is a get function. In order to require it to be polymorphic, we need
the RankNTypes1 language extension.

bff get = \s v ->
let s’ = [0..length s - 1]

g = IntMap.fromAscList (zip s’ s)
h = fromJust (assoc (get s’) v)
h’ = IntMap.union h g

in seq h (map (fromJust . flip IntMap.lookup h’) s’)

The symbol s’ is bound to a template for the result of a bff application. Specifically,
it determines the length of the resulting list to be equal to the length of the input s.
Note that there are correct bidirectionalizations that violate this property2, but this
implementation does cover them. Since we need to be able to distinguish elements of
the template, using numbers is a natural choice. A mapping g is constructed that maps
elements of s’ to the elements of s at corresponding indices. The get function is evaluated
on s’ and a mapping h is constructed to associate elements of get s’ with corresponding
elements of v. Note that if v and get s’ have different lengths, the bff function errors out
in the first fromJust. The left-biased union used to construct h’ ensures that, whenever
an element of s’ shows up in get s’, the resulting association is preferred over the
association of s’ with s. To produce the result, the elements of s’ are looked up in h’.
Contrary to the first use of fromJust, the second one cannot fail, because all elements
of s’ are in the domain of g and thus of h’. Finally seq is used to propagate an error
from the first fromJust, that otherwise may go unnoticed if no elements of the result are
examined.
This version deviates from the original definition in using a different assoc function,

that returns a Maybe when the original returned Either. Thus the error container is now
eliminated with fromJust instead of either.

2 Agda

We will introduce the Agda language closely following Norell (2008). The most significant
differences to Haskell are the introduction of dependent types and the requirement for all
functions to be total. In order to show the benefits of machine verification, this document
is written as a , so its source can be verified by Agda.

In a dependently typed language, the result type of a function may embody the concrete
parameters passed to the function. This blurs the line between types and values, that one
may be used to in Haskell. As a first example, let us have a look at the identity function.
We will use a slightly simplified version of the definition from the standard library3.

1Voigtländer used the now deprecated Rank2Types extension.
2Consider a get that maps [a, b, c] to [a, a] and behaves like the identity otherwise. Then the only

correct result for put [1, 2, 3] [1, 2] is [1, 2].
3The id function is available in the Function module. Further footnotes just mention the module name.
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module fsbxia where

import Level
import Category.Functor
import Category.Monad

open import Function using (id)

open Function using (const)

open import Data.Nat using (ℕ ; zero ; suc)

open import Data.Fin using (Fin ; zero ; suc)

open import Data.List using (List ; [] ; _∷_)

open import Data.Vec using (Vec ; [] ; _∷_)
open Data.Vec using () renaming (_∷_ to _∷V_)

open Data.List using (length)

open Data.Vec using (lookup)

open import Relation.Binary.Core using (_≡_ ; refl)

open import Data.Empty using (⊥)

import Relation.Nullary
open Relation.Nullary using (¬_)

import Relation.Binary.Core
open Relation.Binary.Core using (_≢_)

import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality using (sym ; trans)

FinMap : ℕ → Set → Set
FinMap m A = Vec A m

open import Data.Maybe using (Maybe ; nothing ; just)

open import Data.Maybe using (Maybe ; nothing ; just)

FinMapMaybe : ℕ → Set → Set
FinMapMaybe m A = Vec (Maybe A) m

empty : {m : ℕ} → {A : Set} → FinMapMaybe m A
empty {zero}   = []
empty {suc m}  = nothing ∷ empty

insert :  {m : ℕ} → {A : Set} → Fin m → A → FinMapMaybe m A →
          FinMapMaybe m A
insert zero     a (x ∷ xs) = just a ∷ xs
insert (suc i)  a (x ∷ xs) = x ∷ insert i a xs

open import Data.Product using (_×_ ; _,_)

fromAscList : {m : ℕ} → {A : Set} → List (Fin m × A) → FinMapMaybe m A
fromAscList []              = empty
fromAscList ((i , a) ∷ xs)  = insert i a (fromAscList xs)

open import Function using (_∘_)
open import Data.Vec using (tabulate)

open import Data.Maybe using () renaming (maybe′ to maybe)

union :  {m : ℕ} → {A : Set} → FinMapMaybe m A → FinMap m A →
         FinMap m A
union h₁ h₂ = tabulate (λ i → maybe id (lookup i h₂) (lookup i h₁))

open import Data.Bool using (Bool ; true ; false)
open import Relation.Nullary.Core using (Dec ; yes ; no)

postulate

  Carrier : Set
  deq : (b c : Carrier) → Dec (b ≡ c)

open import Data.Fin.Props using (_≟_)

checkInsert :  {m : ℕ} → Fin m → Carrier → FinMapMaybe m Carrier →
               Maybe (FinMapMaybe m Carrier)
checkInsert i b h  with lookup i h
...                | nothing = just (insert i b h)
...                | just c  with deq b c
...                          | yes b≡c  = just h
...                          | no b≢c   = nothing

open Category.Monad.RawMonad {Level.zero} Data.Maybe.monad using (_>>=_)
assoc :  {n m : ℕ} → Vec (Fin m) n → Vec Carrier n →
         Maybe (FinMapMaybe m Carrier)
assoc {zero}   []        []        = just empty
assoc {suc n}  (i ∷ is)  (b ∷ bs)  = assoc is bs >>= checkInsert i b

open import Data.Vec using () renaming (map to mapV)

open import Data.List using (zip) renaming (map to mapL)

restrict :  {A : Set} → {m : ℕ} → (Fin m → A) → List (Fin m) →
            FinMapMaybe m A
restrict f is = fromAscList (zip is (mapL f is))

open import Data.Vec using (toList)

lemma-1 :  {m n : ℕ} → (is : Vec (Fin m) n) → (f : Fin m → Carrier) →
           assoc is (mapV f is) ≡ just (restrict f (toList is))

open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)

import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality using (cong)

lemma-checkInsert-restrict : {m : ℕ} →
  (f : Fin m → Carrier) → (i : Fin m) → (is : List (Fin m)) →
  checkInsert i (f i) (restrict f is) ≡ just (restrict f (i ∷ is))

lemma-1 []        f = refl
lemma-1 (i ∷ is)  f = begin
  (assoc is (mapV f is) >>= checkInsert i (f i))
    ≡⟨ cong (λ h → h >>= checkInsert i (f i)) (lemma-1 is f) ⟩
  (just (restrict f (toList is)) >>= checkInsert i (f i))
    ≡⟨ refl ⟩
  checkInsert i (f i) (restrict f (toList is))
    ≡⟨ lemma-checkInsert-restrict f i (toList is) ⟩
  just (insert i (f i) (restrict f (toList is))) ∎

data InsertionResult {m : ℕ} (i : Fin m) (b : Carrier)
  (h : FinMapMaybe m Carrier) : Maybe (FinMapMaybe m Carrier) → Set where
  same   :  lookup i h ≡ just b → InsertionResult i b h (just h)
  new    :  lookup i h ≡ nothing → InsertionResult i b h (just (insert i b h))
  wrong  :  (c : Carrier) → b ≢ c → lookup i h ≡ just c →
            InsertionResult i b h nothing

insertionresult :  {m : ℕ} → (i : Fin m) → (b : Carrier) →
                   (h : FinMapMaybe m Carrier) →
                   InsertionResult i b h (checkInsert i b h)

open import Relation.Binary.PropositionalEquality using (inspect ; [_])

insertionresult i b h  with lookup i h  | inspect (lookup i) h
insertionresult i b h  | nothing        | [ p ] = new p
insertionresult i b h  | just c         | [ p ]  with deq b c
insertionresult i b h  | just c         | [ p ]  | no b≢c   = wrong c b≢c p

insertionresult i b h  | just .b        | [ p ]  | yes refl  = same p

lemma-insert-same :  {τ : Set} {m : ℕ} → (h : FinMapMaybe m τ) →
  (i : Fin m) → (a : τ) → lookup i h ≡ just a → h ≡ insert i a h

lemma-insert-same  []                        ()       a p
lemma-insert-same  (.        (just a) ∷ xs)  zero     a refl  = refl
lemma-insert-same  (x ∷ xs)                  (suc i)  a p     =
                   cong (_∷_ x) (lemma-insert-same xs i a p)

lemma-lookup-restrict : {A : Set} {m : ℕ} → (i : Fin m) → (f : Fin m → A) →
  (is : List (Fin m)) → (a : A) → lookup i (restrict f is) ≡ just a → f i ≡ a

lemma-lookup-empty : {A : Set} {m : ℕ} → (i : Fin m) →
  lookup {A = Maybe A} i empty ≡ nothing
lemma-lookup-insert : {A : Set} {m : ℕ} → (i : Fin m) → (a : A) →
  (h : FinMapMaybe m A) → lookup i (insert i a h) ≡ just a
lemma-lookup-insert-other : {A : Set} {m : ℕ} → (i j : Fin m) → (a : A) →
  (h : FinMapMaybe m A) → i ≢ j → lookup i h ≡ lookup i (insert j a h)

import Relation.Nullary.Negation
open Relation.Nullary.Negation using (contradiction)
lemma-just≢nothing : {A Whatever : Set} {a : A} {ma : Maybe A} → ma ≡ just a → ma ≡ nothing  → Whatever
lemma-just≢nothing refl ()

lemma-lookup-empty zero    = refl
lemma-lookup-empty (suc i) = lemma-lookup-empty i

just-injective : {A : Set} → {x y : A} → (Maybe.just x) ≡ (Maybe.just y) → x ≡ y
just-injective refl = refl

lemma-lookup-insert zero    a (x ∷ xs) = refl
lemma-lookup-insert (suc i) a (x ∷ xs) = lemma-lookup-insert i a xs

lemma-lookup-insert-other zero    zero    a h        p = contradiction refl p
lemma-lookup-insert-other zero    (suc j) a (x ∷ xs) p = refl
lemma-lookup-insert-other (suc i) zero    a (x ∷ xs) p = refl
lemma-lookup-insert-other (suc i) (suc j) a (x ∷ xs) p = lemma-lookup-insert-other i j a xs (p ∘ cong suc)

lemma-lookup-restrict i f []        a p = lemma-just≢nothing p (lemma-lookup-empty i)
lemma-lookup-restrict i f (i′ ∷ is) a p with i ≟ i′
lemma-lookup-restrict i f (.i ∷ is) a p | yes refl = just-injective (begin
   just (f i)
     ≡⟨ sym (lemma-lookup-insert i (f i) (restrict f is)) ⟩
   lookup i (insert i (f i) (restrict f is))
     ≡⟨ p ⟩
   just a ∎)
lemma-lookup-restrict i f (i′ ∷ is) a p | no i≢i′ = lemma-lookup-restrict i f is a (begin
  lookup i (restrict f is)
    ≡⟨ lemma-lookup-insert-other i i′ (f i′) (restrict f is) i≢i′ ⟩
  lookup i (insert i′ (f i′) (restrict f is))
    ≡⟨ p ⟩
  just a ∎)

lemma-checkInsert-restrict f i is  with checkInsert i (f i) (restrict f is)
                                   | insertionresult i (f i) (restrict f is)
lemma-checkInsert-restrict f i is  | ._ | same p = cong just
                                   (lemma-insert-same _ i (f i) p)
lemma-checkInsert-restrict f i is  | ._ | new _ = refl
lemma-checkInsert-restrict f i is  | ._ | wrong c fi≢c p = contradiction
                                   (lemma-lookup-restrict i f is c p) fi≢c

open import Function using (flip)

lemma-2 : {m n : ℕ} → (is : Vec (Fin m) n) → (v : Vec Carrier n) →
  (h : FinMapMaybe m Carrier) → assoc is v ≡ just h →
  mapV (flip lookup h) is ≡ mapV just v

lemma-lookup-assoc :  {m n : ℕ} → (i : Fin m) → (is : Vec (Fin m) n) →
  (b : Carrier) → (bs : Vec Carrier n) → (h : FinMapMaybe m Carrier) →
  assoc (i ∷ is) (b ∷ bs) ≡ just h → lookup i h ≡ just b

lemma-lookup-assoc i is b bs h  p   with assoc is bs
lemma-lookup-assoc i is b bs h  ()   | nothing
lemma-lookup-assoc i is b bs h  p    | just h′ with checkInsert i b h′ | insertionresult i b h′
lemma-lookup-assoc i is b bs .h refl | just h  | ._ | same pl = pl
lemma-lookup-assoc i is b bs ._ refl | just h′ | ._ | new _   = lemma-lookup-insert i b h′
lemma-lookup-assoc i is b bs h  ()   | just h′ | ._ | wrong _ _ _

lemma-2-change-mapping : {m n : ℕ} → (i : Fin m) → (is : Vec (Fin m) n) →
  (b : Carrier) → (bs : Vec Carrier n) → (h : FinMapMaybe m Carrier) →
  (h′ : FinMapMaybe m Carrier) → assoc is bs ≡ just h′ →
  checkInsert i b h′ ≡ just h →
  mapV (flip lookup h) is ≡ mapV (flip lookup h′) is

lemma-2 []       []       h ph = refl
lemma-2 (i ∷ is) (b ∷ bs) h ph with assoc is bs | inspect (assoc is) bs
lemma-2 (i ∷ is) (b ∷ bs) h () | nothing        | [ ph′ ]

lemma-2 (i ∷ is) (b ∷ bs) h ph | just h′ | [ ph′ ] = begin
  lookup i h ∷ mapV (flip lookup h) is
    ≡⟨ cong  (flip _∷V_ (mapV (flip lookup h) is))
             (lemma-lookup-assoc i is b bs h origph) ⟩
  just b ∷ mapV (flip lookup h) is
    ≡⟨ cong (_∷_ (just b)) (lemma-2-change-mapping i is b bs h h′ ph′ ph) ⟩
  just b ∷ mapV (flip lookup h′) is
    ≡⟨ cong (_∷_ (just b)) (lemma-2 is bs h′ ph′) ⟩
  just b ∷ mapV just bs ∎
    where origph = trans (cong (flip _>>=_ (checkInsert i b)) ph′) ph

open import Data.List.All using (All ; [] ; _∷_)

open Data.List.All using () renaming (map to mapA)

open import Data.Product using (Σ ; _,_ ; proj₁ ; proj₂)

open Data.Product using (∃)

_in-domain-of_ :  {m : ℕ} → (is : List (Fin m)) → (FinMapMaybe m Carrier) →
                  Set
_in-domain-of_ is h = All (λ i → ∃ λ x → lookup i h ≡ just x) is

lemma-assoc-domain : {m n : ℕ} → (is : Vec (Fin m) n) →
  (bs : Vec Carrier n) → (h : FinMapMaybe m Carrier) → assoc is bs ≡ just h →
  (toList is) in-domain-of h

lemma-lookup-checkInsert : {m : ℕ} → (i j : Fin m) → (b c : Carrier) →
  (h h′ : FinMapMaybe m Carrier) → lookup i h ≡ just b →
  checkInsert j c h ≡ just h′ → lookup i h′ ≡ just b

lemma-lookup-checkInsert i j b c h h′ pl ph′ with checkInsert j c h | insertionresult j c h
lemma-lookup-checkInsert i j b c h .h pl refl | ._ | same _ = pl
lemma-lookup-checkInsert i j b c h h′ pl ph′  | ._ | new _ with i ≟ j
lemma-lookup-checkInsert i .i b c h h′ pl ph′ | ._ | new pl′ | yes refl = lemma-just≢nothing pl pl′
lemma-lookup-checkInsert i j b c h .(insert j c h) pl refl | ._ | new _ | no i≢j = begin
  lookup i (insert j c h)
    ≡⟨ sym (lemma-lookup-insert-other i j c h i≢j) ⟩
  lookup i h
    ≡⟨ pl ⟩
  just b ∎
lemma-lookup-checkInsert i j b c h h′ pl () | ._ | wrong _ _ _

lemma-assoc-domain []        []        h ph = []
lemma-assoc-domain (i ∷ is)  (b ∷ bs)  h ph  with assoc is bs  | inspect (assoc is) bs
lemma-assoc-domain (i ∷ is)  (b ∷ bs)  h ()  | nothing         | [ ph′ ]

lemma-assoc-domain (i ∷ is) (b ∷ bs) h    ph    | just h′ | [ ph′ ] with checkInsert i b h′
  | inspect (checkInsert i b) h′ | insertionresult i b h′
lemma-assoc-domain (i ∷ is) (b ∷ bs) h    ()    | just h′ | [ ph′ ] | ._
  | _       | wrong _ _ _
lemma-assoc-domain (i ∷ is) (b ∷ bs) .h′  refl  | just h′ | [ ph′ ] | ._
  | _       | same pl = (b , pl) ∷ (lemma-assoc-domain is bs h′ ph′)

lemma-assoc-domain (i ∷ is) (b ∷ bs) ._ refl | just h′ | [ ph′ ] | ._ | [ pc ]
  | new _ =  (b , lemma-lookup-insert i b h′) ∷
             (mapA
               (λ {j} p →  proj₁ p ,
                           lemma-lookup-checkInsert  j i (proj₁ p) b h′
                                                     (insert i b h′) (proj₂ p) pc)
               (lemma-assoc-domain is bs h′ ph′))

lemma-map-lookup-assoc : {m n : ℕ} → (i : Fin m) → (b : Carrier) →
  (h h′ : FinMapMaybe m Carrier) → checkInsert i b h′ ≡ just h →
  (js : Vec (Fin m) n) → (toList js) in-domain-of h′ →
  mapV (flip lookup h) js ≡ mapV (flip lookup h′) js

lemma-2-change-mapping i is b bs h h′ ph′ ph =
  lemma-map-lookup-assoc i b h h′ ph is (lemma-assoc-domain is bs h′ ph′)

open Relation.Binary.PropositionalEquality using (cong₂)

lemma-map-lookup-assoc i b h h′ ph []        pj = refl
lemma-map-lookup-assoc i b h h′ ph (j ∷ js)  ((c , pl) ∷ pj) = cong₂ _∷_
  (trans (lemma-lookup-checkInsert j i c b h′ h pl ph) (sym pl))
  (lemma-map-lookup-assoc i b h h′ ph js pj)

postulate
  free-theoremL : (get : {A : Set} → List A → List A) → {B C : Set} →
    (f : B → C) → (l : List B) → get (mapL f l) ≡ mapL f (get l)

open import Data.List using () renaming (replicate to replicateL)
open import Data.Unit using (tt)

getList-to-getlen : ({A : Set} → List A → List A) → ℕ → ℕ
getList-to-getlen get = length ∘ get ∘ flip replicateL tt

getList-length :  (get : {A : Set} → List A → List A) →
                  {B : Set} → (l : List B) →
                  length (get l) ≡ getList-to-getlen get (length l)

open import Data.List.Properties using (length-map)

replicate-length :  {A : Set} → (l : List A) →
                    mapL (const tt) l ≡ replicateL (length l) tt

replicate-length [] = refl
replicate-length (_ ∷ l) = cong (_∷_ tt) (replicate-length l)

getList-length get l = begin
  length (get l)
    ≡⟨ sym (length-map (const tt) (get l)) ⟩
  length (mapL (const tt) (get l))
    ≡⟨ cong length (sym (free-theoremL get (const tt) l)) ⟩
  length (get (mapL (const tt) l))
    ≡⟨ cong (length ∘ get) (replicate-length l) ⟩
  length (get (replicateL (length l) tt)) ∎

bff :  {getlen : ℕ → ℕ} →
       ({A : Set} → {n : ℕ} → Vec A n → Vec A (getlen n)) →
       {n : ℕ} → Vec Carrier n → Vec Carrier (getlen n) → Maybe (Vec Carrier n)

enumerate : {n : ℕ} → Vec Carrier n → Vec (Fin n) n
enumerate _ = tabulate id

denumerate : {n : ℕ} → Vec Carrier n → Fin n → Carrier
denumerate = flip lookup

lemma-map-denumerate-enumerate :  {n : ℕ} → (bs : Vec Carrier n) →
                                  mapV (denumerate bs) (enumerate bs) ≡ bs

open import Data.Vec.Properties using (map-∘ ; tabulate-∘)

lemma-map-denumerate-enumerate []       = refl
lemma-map-denumerate-enumerate (a ∷ as) = cong (_∷_ a) (begin
  mapV (flip lookup (a ∷ as)) (tabulate suc)
    ≡⟨ cong (mapV (flip lookup (a ∷ as))) (tabulate-∘ suc id) ⟩
  mapV (flip lookup (a ∷ as)) (mapV suc (tabulate id))
    ≡⟨ refl ⟩
  mapV (flip lookup (a ∷ as)) (mapV suc (enumerate as))
    ≡⟨ sym (map-∘ _ _ (enumerate as)) ⟩
  mapV (flip lookup (a ∷ as) ∘ suc) (enumerate as)
    ≡⟨ refl ⟩
  mapV (denumerate as) (enumerate as)
    ≡⟨ lemma-map-denumerate-enumerate as ⟩
  as ∎)

open Category.Functor.RawFunctor {Level.zero} Data.Maybe.functor using (_<$>_)

bff get s v =  let  s′  = enumerate s
                    g   = tabulate (denumerate s)
                    h   = assoc (get s′) v
                    h′  = (flip union g) <$> h
               in (flip mapV s′ ∘ flip lookup) <$> h′

lemma-assoc-enough : {getlen : ℕ → ℕ} →
  (get : {A : Set} → {n : ℕ} → Vec A n → Vec A (getlen n)) →
  {n : ℕ} → (s : Vec Carrier n) → (v : Vec Carrier (getlen n)) →
  ∃ (λ h → assoc (get (enumerate s)) v ≡ just h) → ∃ λ u → bff get s v ≡ just u
lemma-assoc-enough get s v (h , p) =
    u , cong (_<$>_ (flip mapV s′ ∘ flip lookup) ∘ _<$>_ (flip union g)) p
    where  s′  = enumerate s
           g   = tabulate (denumerate s)
           u   = mapV (flip lookup (union h g)) s′

theorem-1 :  {getlen : ℕ → ℕ} →
             (get : {A : Set} → {n : ℕ} → Vec A n → Vec A (getlen n)) →
             {n : ℕ} → (s : Vec Carrier n) → bff get s (get s) ≡ just s

postulate
  free-theoremV : {getlen : ℕ → ℕ} →
    (get : {A : Set} → {n : ℕ} → Vec A n → Vec A (getlen n)) →
    {B C : Set} → (f : B → C) → {n : ℕ} → (l : Vec B n) →
    get (mapV f l) ≡ mapV f (get l)

lemma-union-restrict :  {m : ℕ} → {A : Set} →
                        (f : Fin m → A) → (is : List (Fin m)) →
                        union (restrict f is) (tabulate f) ≡ tabulate f

open Relation.Binary.PropositionalEquality using (_≗_)

open Data.Vec.Properties using (lookup∘tabulate ; map-cong)

theorem-1 get s =  let    h↦h′  = _<$>_ (flip union (tabulate (denumerate s)))
                          h′↦r  = _<$>_ (flip mapV (enumerate s) ∘ flip lookup)
                   in begin
  bff get s (get s)
    ≡⟨ cong (bff get s ∘ get) (sym (lemma-map-denumerate-enumerate s)) ⟩
  bff get s (get (mapV (denumerate s) (enumerate s)))
    ≡⟨ cong (bff get s) (free-theoremV get (denumerate s) (enumerate s)) ⟩
  bff get s (mapV (denumerate s) (get (enumerate s)))
    ≡⟨ refl ⟩
  (h′↦r ∘ h↦h′) (assoc  (get (enumerate s))
                        (mapV (denumerate s) (get (enumerate s))))
    ≡⟨ cong (h′↦r ∘ h↦h′) (lemma-1 (get (enumerate s)) (denumerate s)) ⟩
  (h′↦r ∘ h↦h′ ∘ just) (restrict (denumerate s) (toList (get (enumerate s))))
    ≡⟨ refl ⟩
  (h′↦r ∘ just) (union   (restrict (denumerate s) (toList (get (enumerate s))))
                         (tabulate (denumerate s)))
    ≡⟨ cong (h′↦r ∘ just) (lemma-union-restrict  (denumerate s)
                                                 (toList (get (enumerate s)))) ⟩
  (h′↦r ∘ just) (tabulate (denumerate s))
    ≡⟨ refl ⟩
  just (mapV (flip lookup (tabulate (denumerate s))) (enumerate s))
    ≡⟨ cong just (map-cong (lookup∘tabulate (denumerate s)) (enumerate s)) ⟩
  just (mapV (denumerate s) (enumerate s))
    ≡⟨ cong just (lemma-map-denumerate-enumerate s) ⟩
  just s ∎

lemma-tabulate-∘ : {m : ℕ} {A : Set} {f g : Fin m → A} →
  f ≗ g → tabulate f ≡ tabulate g

lemma-tabulate-∘ {zero}  {_} {f} {g} f≗g = refl
lemma-tabulate-∘ {suc m} {_} {f} {g} f≗g = cong₂ _∷_ (f≗g zero) (lemma-tabulate-∘ (f≗g ∘ suc))

lemma-union-restrict {m} f is = lemma-tabulate-∘ (lemma-inner is)
    where lemma-inner : (is : List (Fin m)) → (j : Fin m) → maybe id (lookup j (tabulate f)) (lookup j (restrict f is)) ≡ f j
          lemma-inner []       j = begin
            maybe id (lookup j (tabulate f)) (lookup j empty)
              ≡⟨ cong (maybe id (lookup j (tabulate f))) (lemma-lookup-empty j) ⟩
            maybe id (lookup j (tabulate f)) nothing
              ≡⟨ refl ⟩
            lookup j (tabulate f)
              ≡⟨ lookup∘tabulate f j ⟩
            f j ∎
          lemma-inner (i ∷ is)  j with j ≟ i
          lemma-inner (.j ∷ is) j | yes refl = cong (maybe id (lookup j (tabulate f)))
                                                    (lemma-lookup-insert j (f j) (restrict f is))
          lemma-inner (i ∷ is)  j | no j≢i = begin
            maybe id (lookup j (tabulate f)) (lookup j (insert i (f i) (restrict f is)))
              ≡⟨ cong (maybe id (lookup j (tabulate f))) (sym (lemma-lookup-insert-other j i (f i) (restrict f is) j≢i)) ⟩
            maybe id (lookup j (tabulate f)) (lookup j (restrict f is))
              ≡⟨ lemma-inner is j ⟩
            f j ∎

theorem-2 :  {getlen : ℕ → ℕ} →
             (get : {A : Set} → {n : ℕ} → Vec A n → Vec A (getlen n)) →
             {n : ℕ} → (s : Vec Carrier n) → (v : Vec Carrier (getlen n)) →
             (u : Vec Carrier n) → bff get s v ≡ just u → get u ≡ v

lemma-<$>-just :  {A B : Set} {f : A → B} {b : B} {ma : Maybe A} →
                  f <$> ma ≡ just b → ∃ λ a → ma ≡ just a
lemma-<$>-just {ma = just x}   _ = x , refl
lemma-<$>-just {ma = nothing}  ()

lemma-union-not-used : {m n : ℕ} (h : FinMapMaybe m Carrier) →
  (g : FinMap m Carrier)
  (is : Vec (Fin m) n) → (toList is) in-domain-of h →
  mapV just (mapV (flip lookup (union h g)) is) ≡ mapV (flip lookup h) is

lemma-union-not-used h h′ []        p = refl
lemma-union-not-used h h′ (i ∷ is′) (All._∷_ (b , pb) p′) = cong₂ _∷_ (begin
      just (lookup i (union h h′))
        ≡⟨ cong just (lookup∘tabulate (λ j → maybe id (lookup j h′) (lookup j h)) i) ⟩
      just (maybe id (lookup i h′) (lookup i h))
        ≡⟨ cong just (cong (maybe id (lookup i h′)) pb) ⟩
      just (maybe id (lookup i h′) (just b))
        ≡⟨ sym pb ⟩
      lookup i h ∎)
  (lemma-union-not-used h h′ is′ p′)

map-just-injective :  {A : Set} {n : ℕ} {xs ys : Vec A n} →
                      mapV Maybe.just xs ≡ mapV Maybe.just ys → xs ≡ ys

∷-injective : {A : Set} {n : ℕ} {x y : A} {xs ys : Vec A n} → (x ∷V xs) ≡ (y ∷V ys) → x ≡ y × xs ≡ ys
∷-injective refl = refl , refl

map-just-injective {xs = []}      {ys = []}       p  = refl
map-just-injective {xs = x ∷ xs′} {ys = y ∷ ys′}  p with ∷-injective p
map-just-injective {xs = x ∷ xs′} {ys = .x ∷ ys′} p | refl , p′ = cong (_∷_ x) (map-just-injective p′)

theorem-2 get s v u p with lemma-<$>-just (proj₂ (lemma-<$>-just p))
theorem-2 get s v u p | h , ph =  let  s′    = enumerate s
                                       g     = tabulate (denumerate s)
                                       h↦h′  = flip union g
                                       h′↦r  = flip mapV s′ ∘ flip lookup
                                  in begin
  get u
    ≡⟨ just-injective (begin
      get <$> (just u)
        ≡⟨ cong (_<$>_ get) (sym p) ⟩
      get <$> (bff get s v)
        ≡⟨ cong (_<$>_ get ∘ _<$>_ h′↦r ∘ _<$>_ h↦h′) ph ⟩
      get <$> (h′↦r <$> (h↦h′ <$> just h)) ∎) ⟩
  get (mapV (flip lookup (h↦h′ h)) s′)
    ≡⟨ free-theoremV get (flip lookup (h↦h′ h)) s′ ⟩
  mapV (flip lookup (h↦h′ h)) (get s′)
     ≡⟨ map-just-injective (begin
       mapV just (mapV (flip lookup (union h g)) (get s′))
         ≡⟨ lemma-union-not-used   h g (get s′)
                                   (lemma-assoc-domain (get s′) v h ph) ⟩
       mapV (flip lookup h) (get s′)
         ≡⟨ lemma-2 (get s′) v h ph ⟩
       mapV just v
         ∎) ⟩
  v ∎

import Data.List.Any
open Data.List.Any using (Any ; here ; there)

open Data.List.Any.Membership-≡ using (_∈_ ; _∉_)

data All-different {A : Set} : List A → Set where
  different-[]  :  All-different []
  different-∷   :  {x : A} {xs : List A} →
                   x ∉ xs → All-different xs → All-different (x ∷ xs)

different-assoc :  {m n : ℕ} → (u : Vec (Fin m) n) → (v : Vec Carrier n) →
                   All-different (toList u) → ∃ λ h → assoc u v ≡ just h

lemma-checkInsert-new : {m : ℕ} → (i : Fin m) → (b : Carrier) →
  (h : FinMapMaybe m Carrier) → lookup i h ≡ nothing →
  checkInsert i b h ≡ just (insert i b h)

lemma-checkInsert-new i b h p with lookup i h
lemma-checkInsert-new i b h refl | ._ = refl

lemma-∉-lookup-assoc : {m n : ℕ} → (i : Fin m) → (is : Vec (Fin m) n) →
  (bs : Vec Carrier n) → (h : FinMapMaybe m Carrier) →
  assoc is bs ≡ just h → (i ∉ toList is) → lookup i h ≡ nothing

different-assoc  []        []        _ = empty , refl
different-assoc  (u ∷ us)  (v ∷ vs)  (different-∷ u∉us diff-us)
                 with different-assoc us vs diff-us
different-assoc  (u ∷ us)  (v ∷ vs)  (different-∷ u∉us diff-us)
                 | h , p = insert u v h , (begin
  (assoc us vs >>= checkInsert u v)
    ≡⟨ cong (flip _>>=_ (checkInsert u v)) p ⟩
  checkInsert u v h
    ≡⟨ lemma-checkInsert-new u v h (lemma-∉-lookup-assoc u us vs h p u∉us) ⟩
  just (insert u v h) ∎)

lemma-lookup-checkInsert-other : {m : ℕ} → (i j : Fin m) → i ≢ j →
  (b : Carrier) → (h h′ : FinMapMaybe m Carrier) → checkInsert j b h ≡ just h′ →
  lookup i h ≡ lookup i h′

lemma-lookup-checkInsert-other i j i≢j b h h′ ph′ with lookup j h
lemma-lookup-checkInsert-other i j i≢j b h h′ ph′ | just c with deq b c
lemma-lookup-checkInsert-other i j i≢j b h .h refl | just .b | yes refl = refl
lemma-lookup-checkInsert-other i j i≢j b h h′ () | just c | no b≢c
lemma-lookup-checkInsert-other i j i≢j b h .(insert j b h) refl | nothing = lemma-lookup-insert-other i j b h i≢j

lemma-∉-lookup-assoc  i []          []          .empty  refl  i∉is
                      = lemma-lookup-empty i
lemma-∉-lookup-assoc  i (i′ ∷ is′)  (b′ ∷ bs′)  h       ph    i∉is
                      with assoc is′ bs′  | inspect (assoc is′) bs′
lemma-∉-lookup-assoc  i (i′ ∷ is′)  (b′ ∷ bs′)  h       ()    i∉is
                      | nothing           | [ ph′ ]
lemma-∉-lookup-assoc  i (i′ ∷ is′)  (b′ ∷ bs′)  h       ph    i∉is
                      | just h′           | [ ph′ ] = begin
  lookup i h
    ≡⟨ sym (lemma-lookup-checkInsert-other i i′ (i∉is ∘ here) b′ h′ h ph) ⟩
  lookup i h′
    ≡⟨ lemma-∉-lookup-assoc i is′ bs′ h′ ph′ (i∉is ∘ there) ⟩
  nothing ∎




id : {α : Set} → α→ α
id x = x

While the definition looks the same as in Haskell, the type declaration has changed. The
availability of dependent types changes the way to express polymorphism. Instead of
treating all lowercase variables as type variables, we say that α shall be an element of
Set. The type Set contains all types that we will use, except for itself. Agda knows about
a type that contains Set, but we are not interested in it and further types outside Set.
Therefore, all citations from the standard library have their support for types beyond Set
removed. Eliding those types allows us to give shorter type signatures.
The next notable difference in the type signature of id is the use of curly parentheses

and the fact that it has two parameters instead of one. A parameter enclosed in curly
parentheses is called implicit. When the function is defined or used, implicit parameters
are not named or given. Instead, the type system is supposed to figure out the values of
these parameters. In the case of the identity function, the type of the explicit parameter
will be the value of the implicit parameter. It is possible to define functions for which
the type system cannot determine the values of implicit parameters. A type error will be
caused in the application of such a function.

For brevity, we can declare multiple consecutive parameters of the same type without
repeating the type, as can be seen in the constant function as given in the standard
library4.

const : {α β : Set} → α→ β → α
const x _ = x

As in Haskell, the underscore serves as a placeholder for parameters we do not care about.
Even though the identity and constant functions already use dependent types, these

examples do not illustrate the benefits of this language feature. To that end, we will have
a look at the types Fin and Vec soon.

The totality requirement might seem like a small change, but it has a noticeable impact.
Omitting cases in function definitions or producing runtime errors is not allowed. For
example, there is no literal translation of the fromJust : Maybe a -> a function known
from Haskell, because there is no way to implement the Nothing case.
Furthermore, functions are required to terminate. Since checking this property is not

possible in general, only a subset of terminating functions is accepted. A literal translation
of the repeat : a -> [a] Haskell function would fail the termination checker, because
a recursive call must be given structurally smaller parameters. Here, the recursive call
takes the same parameter as the original call. We will not go into further detail, because
we will not encounter a function that is rejected by the termination checker.

The advantage of the totality requirement is that it turns Agda into a proof verification
system. Statements are represented by types and a proof is represented by a term that
has the desired type. If the language permitted non-terminating functions, we could write
terms of any type, breaking consistency of the embedded logic.
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Note that the logic used by Agda is intuitionistic. The main impact for us is that a
proof of an existential quantifier has to give one of the elements that are supposed to
exist. Other than that, we will seldom notice a difference to classic logic. Let us defer
examples of statements and proofs until we have some data types to reason about.

2.1 Data types

Most of the types that we will use are data types. These are similar in notation to the
syntax introduced by the GADTs Haskell extension.

data N : Set where
zero : N
suc : N→ N

This definition introduces the type of natural numbers as given in the standard library5.
This type is named N, is an element of Set and takes no arguments. It has two constructors,
named zero and suc, of which the latter takes a natural number as a constructor parameter.
To write down elements of this type, we use constructors like functions and apply them
to the required parameters. So examples for elements of N are zero and suc zero.

Let us have a look at a data type with arguments. The type of finite numbers, as given
in the standard library6, takes an argument of type N and contains all numbers that are
smaller than the argument.

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n→ Fin (suc n)

We can see that declarations of the type and of constructors have the same syntax
as function declarations. The names of the constructors are shared with the N type.
Overloading of names is allowed for constructors, because their types can often be inferred
from the context. No other names may be overloaded. Therefore, the constructors of
Fin use the suc constructor of N in their types. Also note that the type Fin zero has no
elements. To express Fin in Haskell, one has to use type level naturals and activate the
GADTs extension.
The type of homogeneous sequences is also given in the standard library7.

data List (α : Set) : Set where
[ ] : List α
_::_ : α→ List α→ List α

Before we delve into the type of List, we will have a closer look at the names of the
constructors. Since these constructors are not alphanumeric, the question of what makes

5Data.Nat
6Data.Fin
7Data.List

8



a symbol arises. The language considers most non-whitespace characters valid members of
symbols. Notable exceptions are round and curly parentheses and dots. In the print-out,
white spaces may be thin, so the reader is asked to infer them from the context.

Underscores have a special meaning when used in symbols. They denote the places
where arguments shall be given in an application. For example, the list containing just the
number zero can be written as zeroN :: [ ]. Here we already have to disambiguate which
zero we are referring to. In a partial function application, this syntax cannot be used
though, so the function prepending a zeroN to a given list would be written as _::_ zeroN.
Like the Fin type, the List type takes one argument. However, this argument is given

before the colon. We need to distinguish the places of arguments, because they serve
different needs.

An argument given after the colon is called data index. Indices are noted like function
types. Symbols bound there are not visible in constructors. The actual values given for
indices can vary among constructors, as can be seen in the definition of Fin. Whenever
one would use the GADTs extension in Haskell, an index is called for in Agda.
Arguments given before the colon are called data parameters. They are written as a

space-separated sequence. All parameters must be given a name. Symbols bound as
parameters can be used both in the type of indices and constructor type signatures. No
differentiation on parameters is allowed. When declaring a constructor, parameters must
appear unchanged in the result type of the signature. Parameters of a data type are not
turned into implicit arguments of the constructors, as one might expect. So functions
cannot branch on them when evaluating an element of a data type.

It is also possible to combine indices and parameters. An example for this is the type
of fixed-length homogeneous sequences as given in the standard library8.

data Vec (α : Set) : N→ Set where
[ ] : Vec α zero
_::_ : {n : N} → α→ Vec α n→ Vec α (suc n)

This definition has similarity to Fin and List and employs both a parameter and an index.
Unlike Fin, [ ] is only constructible for a zero index instead of a suc n index. So for each
index value there is precisely one constructor with matching type.

2.2 Pattern matching

When defining functions on data types, we want to branch on the constructors. In Agda,
as in Haskell, branching is expressed by pattern matching. A simple example that uses
this technique is the length function from the standard library9.

length : {α : Set} → List α→ N
length [ ] = zero
length (_ :: xs) = suc (length xs)

8Data.Vec
9Data.List
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A pattern match allows us to replace a symbol in a parameter list of a function definition
with a constructor of the corresponding type. In this case, the parameter matched has
the type List α, which provides constructors [ ] and _::_. A clause is given for each
constructor. The _::_ constructor introduces a new symbol xs for its second parameter.
Symbols introduced in this way can be subject to pattern matches on their own.

Unlike in Haskell, clauses must not overlap. For instance, the following definition will
be rejected for covering the case zero zero twice.

invalid-pattern-match : N→ N→ N
invalid-pattern-match zero _ = zero
invalid-pattern-match _ zero = suc zero

It will also be rejected for not covering the case (suc i) (suc j). All constructor combinations
must be covered to meet the totality requirement.

2.3 A dependently typed function

A common task to perform on sequences is to retrieve an element from a given position.
In Haskell, this can be done using the (!!) :: [a] -> Int -> a function. When given
a negative number or a number that exceeds the length of the list, this function fails at
runtime. Such behaviour is prohibited by Agda, so a literal translation of this function
is not possible. Ideally, the bound check should happen at compile time. Such a check
requires some knowledge of the length of the sequence. The Vec type is accompanied
with a corresponding index retrieval function in the standard library10, as follows.

lookup : {α : Set} {n : N} → Fin n→ Vec α n→ α
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

In this declaration, the implicit parameter n is used as a type parameter in the remaining
function parameters. This appearance blends the type level and value level that are
clearly separated in Haskell.
As a notational remark, the arrows between parameters in a type signature can be

omitted if the parameters are parenthesized. The declaration above therefore lacks the
arrow separating the implicit parameters.
With the totality requirement in mind the definition of lookup may seem incomplete,

because we omitted the case of an empty Vec. A closer look reveals that this case cannot
happen. The type of [ ] is Vec α zero, so it can only occur when n is zero. There is no
constructor for Fin zero however. The type checker is able to infer this reasoning and
recognizes that our definition covers all type-correct cases.

2.4 Semantic equality

In order to use Agda as a proof assistant, we need to encode desired statements as types.
Many of the statements we are going to see assert equality of two expressions. We will
10Data.Vec
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use a type from the standard library11 that captures semantic equality.

data _≡_ {α : Set} (x : α) : α→ Set where
refl : x ≡ x

This type corresponds to statements of semantic equality of its parameters. Its elements
correspond to proofs of such statements. The only available constructor expresses
reflexivity. Let us look at a simple example.

length-one : {α : Set} → (x : α)→ length (x :: [ ]) ≡ suc zero
length-one _ = refl

Here, we prove that a list containing exactly one given element has length one. Agda is
able to reduce the left hand side of the equation using each clause of the length definition
once. The reduced term for the left hand side arrives at suc zero, which allows us to
use the refl constructor to prove our statement. Precise semantics of the term reduction
system backing Agda are given by Setzer (2008).
It can also happen that a type constructed with _≡_ has no elements, as is the case

with Fin zero. An example of such a type is zeroN ≡ suc zeroN. A type is called inhabited
if it contains elements and uninhabited otherwise. Since proofs are elements, we need to
look a bit further to prove that a type is uninhabited. The standard library12 provides a
prototype of an uninhabited type.

data ⊥ : Set where

Since ⊥ has no constructors, any type correct function that maps into ⊥ can never
be called with type correct parameters due to the totality requirement. To disprove a
statement, we can therefore map it into ⊥ as is done by the negation defined in the
standard library13.

¬_ : Set→ Set
¬ P = P→ ⊥

Before continuing our attempt to disprove the recent example statement, we observe that
the definition of the negation constitutes a type alias. There is no special syntax, as is
needed in Haskell. Instead, a type alias is written as a function into Set, because there is
no distinction between type level and value level in a dependently typed language.

For convenience, we will use another type alias from the standard library11 combining
equality and negation.

_ 6≡_ : {α : Set} → α→ α→ Set
x 6≡ y = ¬ (x ≡ y)

11Relation.Binary.Core
12Data.Empty
13Relation.Nullary
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We can now formulate the wrongness of the recent example in a positive way.

zero6≡one : zeroN 6≡ suc zeroN

Essentially, zero6≡one shall be a function that maps proofs of zeroN ≡ suc zeroN into ⊥, so
it takes one parameter. Just there is no proof of zeroN ≡ suc zeroN. In Agda, we need to
express this insight using the absurd pattern written as (). It is a special case of a pattern
match and expresses that none of the available constructors is applicable in a type correct
way. In a function definition clause it replaces the parameter that is claimed to have no
available constructors. When doing so, the right hand side is simply omitted.

zero6≡one ()

Agda verifies our claim and here it agrees, because the head constructors of the sides of
the equation differ already.
As a notable difference to classic logic, we cannot conclude a statement p from its

double negation ¬ (¬ p) in the intuitionistic logic used by Agda. To get an idea why
this conclusion is not available, we can look at the types. Assuming p has a type α, the
type of ¬ (¬ p) is α → ⊥ → ⊥. A function of the latter type provides no means for
constructing an element of α.

Let us also verify that _≡_ describes an equivalence relation. Since reflexivity holds by
construction, we might wonder whether additional requirements are needed to establish
symmetry and transitivity. Both properties are asserted in the standard library14.

sym : {α : Set} {a b : α} → a ≡ b→ b ≡ a
sym refl = refl

trans : {α : Set} → {a b c : α} → a ≡ b→ b ≡ c→ a ≡ c
trans refl eq = eq

As we can see, these assertions are provable. The way they are proven exhibits an aspect
of dependently typed pattern matching. When we use a constructor in a pattern match,
Agda unifies the type of the constructor with the type of the parameter. For types such
as N and List, all constructors yield the data type exactly, so the unification is trivial. On
the other hand, the pattern match in sym causes a ≡ b to be unified with x ≡ x. Here the
parameter b is replaced by a, so the return type is reduced to a ≡ a. A similar unification
happens in the proof of trans. It changes the type of the second parameter to a ≡ c.

3 Implementing assoc in Agda

After this basic introduction, we want to move on the application to bidirectionalization.
We keep introducing new aspects of Agda and functions from the standard library as
needed. Our first goal is to phrase the definition of assoc in Agda, because it is all that
is needed to formulate and prove the first lemma from Voigtländer (2009).
14Relation.Binary.PropositionalEquality
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3.1 IntMap

In Haskell, an IntMap is a partial mapping defined on integers. It can be thought of
as a table and therefore can only have a finite domain. This type is not predefined in
the standard library of Agda, so we have to come up with an own definition. A naive
implementation would be to construct an association list of pairs of inputs and mapped
values.

We want to use a different implementation to ease the formulation of the first lemma,
which will express an equality about such mappings. We opt not to define an equivalence
relation on representations of these mappings. So the representations need to be unique.
The proposed association lists do not have this property, because reordering a list does
not change mapping it represents.

When looking at the use case of our IntMaps, we will observe a bound on the contained
numbers. So instead of using a mapping from N, we will map from Fin m for some yet
unknown bound m. Since the domain can now be assumed to be finite, we can represent
a mapping as a list of length m with the indices being the possible inputs.

FinMap : N→ Set→ Set
FinMap m α = Vec α m

This type alias allows us to reuse the lookup function for retrieving elements. Unfortunately,
it does not fulfill our need, because we have to represent mappings from arbitrary finite
subsets of N. A mapping with the domain {5} cannot be represented as a FinMap. To
achieve this, we permit each element to be individually absent using the Maybe type
defined in the standard library15.

data Maybe (α : Set) : Set where
nothing : Maybe α
just : α→ Maybe α

Now we wrap the content type of our FinMap definition in a Maybe.

FinMapMaybe : N→ Set→ Set
FinMapMaybe m α = Vec (Maybe α) m

Applying the lookup function to a FinMapMaybe now results in a Maybe α, as does the
lookup function used in Voigtländer (2009). We remember that, apart from lookup,
we will have to implement empty, fromAscList, insert and union. Even though the
standard library does have functions16 almost matching our need for empty and insert,
we give direct implementations here for brevity.

empty : {m : N} → {α : Set} → FinMapMaybe m α
empty {zero} = [ ]
empty {suc m} = nothing :: empty

15Data.Maybe
16The functions replicate and _[_]:=_ are available in Data.Vec.
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Since the length parameter m is the first implicit parameter of empty, we can access it by
surrounding it with curly braces. Then we can pattern match on it as usual. We do not
have to mention it in the recursive invocation of empty, because it can be inferred from
the expected return type.

insert : {m : N} → {α : Set} → Fin m→ α→ FinMapMaybe m α→
FinMapMaybe m α

insert zero a (x :: xs) = just a :: xs
insert (suc i) a (x :: xs) = x :: insert i a xs

In order to express fromAscList, we need a notion of tuples. We will defer this definition
to a later time and just assume that _×_ is the type of pairs and that _,_ is the
corresponding constructor for now.

fromAscList : {m : N} → {α : Set} → List (Fin m × α)→ FinMapMaybe m α
fromAscList [ ] = empty
fromAscList ((i , a) :: xs) = insert i a (fromAscList xs)

Note that our definition of fromAscList does not require an ascending list. The corre-
sponding Haskell function was using this property for efficiency. We will later use it in
this more general form for defining a function restrict, but keep the name, because it is
also an abbreviation of “from association list”.

With the union function, we depart a bit from the original definition. The left-biasedness
required in Voigtländer (2009) is kept, but the types change. Again peeking into the use
case, we will see that the second parameter of union will always be fully defined. In that
case, the result is always fully defined and this property can be represented in the types.
Even though Voigtländer et al. (2013) presented a variant where a disjoint union is used
instead, we rely on these properties here. To define it, we use the tabulate function from
the standard library17, which turns a function into a Vec α m by recording the results on
all the possible inputs. The definition of tabulate needs the function composition _◦_
also available from the standard library18.

tabulate : {n : N} {α : Set} → (Fin n→ α)→ Vec α n
tabulate {zero} f = [ ]
tabulate {suc n} f = f zero :: tabulate (f ◦ suc)

Furthermore, we need the independently typed version of the maybe function from the
standard library19. It works the same way as Haskell’s Maybe eliminator.

maybe : {α β : Set} → (α→ β)→ β → Maybe α→ β

Then, we can define the left-biased union of two functions using the λ notation for
anonymous functions.
17Data.Vec
18Function
19Data.Maybe
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union : {m : N} → {α : Set} → FinMapMaybe m α→ FinMap m α→
FinMap m α

union h1 h2 = tabulate (λ i→ maybe id (lookup i h2) (lookup i h1))

The anonymous function passed to tabulate takes an index i of type Fin m and tries to
look it up in h1. Since h1 is a FinMapMaybe, the result of the lookup can be nothing, in
which case the other mapping h2 is tried. Otherwise the wrapping just constructor is
removed by maybe.

3.2 checkInsert

The checkInsert function given above is supposed to extend an existing mapping with a
new pair ensuring that already existing inputs are mapped to the same elements as before.
If this update cannot be achieved, the function shall fail. We remember its Haskell type to
be Eq a => Int -> a -> IntMap a -> Maybe (IntMap a). Translating this function
to Agda requires more effort. The first issue is the use of the Eq type class. As of this
writing, there is no feature in Agda that directly corresponds to Haskell’s type classes. To
avoid using the Eq type class, we can simply pass a comparison function as an additional
parameter. Using the Bool type with the constructors true and false from the standard
library20, we can type a comparison function as α → α → Bool. Then, we can draft a
first version of checkInsert.

checkInsert : {m : N} → {α : Set} → (α→ α→ Bool)→ Fin m→ α→
FinMapMaybe m α→ Maybe (FinMapMaybe m α)

The original function uses case to branch on the result of lookup. In Agda, this language
construct has been generalized and therefore gained a new syntax. The with keyword
can be used in a function clause to introduce an additional parameter and to give an
expression for it at the same time. New parameters introduced in this way can be used for
pattern matching, except that they need to be separated with | signs. To avoid repetition,
the head of a function clause can be replaced with three dots if the omitted parts match
the preceding clause. We will defer the generalization to a later time and use it in this
basic form for now.

checkInsert eq? i b h with lookup i h
... | nothing = just (insert i b h)
... | just c with eq? b c
... | true = just h
... | false = nothing

This version of checkInsert still needs improvement. We cannot expect the passed eq?
function to represent an equivalence relation, but this property is an essential assumption.
Therefore, we have to choose a more precise type for eq?. Even though the standard library
has a notion of equivalence relations, we actually want to presume eq? to test semantic
20Data.Bool
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equality. Using the definition of equivalence relations, as given in the standard library,
would require the use of multiple levels of Set, a concept that shall remain unexplained
and has been removed from all citations of the standard library. This choice keeps the
complexity of our statements manageable. It also matches the usage of the Eq type class,
because many types from the Haskell Prelude instantiate Eq as semantic equality.

We already saw the type _≡_ representing statements of semantic equality. Our task
is to decide semantic equality though, so we need another definition from the standard
library21 to capture decidability of statements.

data Dec (P : Set) : Set where
yes : P→ Dec P
no : ¬ P→ Dec P

An element of Dec P tells us whether the passed type P is inhabited by either giving us
an inhabitant or a proof that there is no inhabitant. So the eq? function should have the
type (a b : α)→ Dec (a ≡ b).
Another issue with the eq? parameter of checkInsert is that it is tedious to pass

around. Every function that uses the previous definition of checkInsert has to carry an
eq? parameter as well. In Haskell, this passing of eq? has been avoided by the usage of
the Eq type class. In Agda, the usual approach is to push such symbols into module
parameters. Such parameters can be used like any other function, but the module will not
contain definitions for them. When using a parameterized module, a user has to provide
definitions for the parameters in order to obtain contained functions. We will rename α
to Carrier to avoid confusion with local bindings and rename eq? to deq as a short hand
for “decidable equality”. Without delving into the syntax of module parameters, we will
assume that the following symbols are defined.

Carrier : Set
deq : (b c : Carrier)→ Dec (b ≡ c)

Such a deq does not exist for all types bound as Carrier, just like there are Haskell types
that are not instances of Eq. For example, when Carrier is a function type, defining deq
is impossible. Types such as N and Fin usually support equality tests in the standard
library22 though.

_ ?
=_ : {n : N} → (x y : Fin n)→ Dec (x ≡ y)

Now we can apply this machinery to the definition and implementation of checkInsert.

checkInsert : {m : N} → Fin m→ Carrier→ FinMapMaybe m Carrier→
Maybe (FinMapMaybe m Carrier)

checkInsert i b h with lookup i h
... | nothing = just (insert i b h)

21Relation.Nullary.Core
22Data.Fin.Props
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... | just c with deq b c

... | yes b≡c = just h

... | no b6≡c = nothing

3.3 assoc

The Haskell type of assoc is Eq a => [Int] -> [a] -> Maybe (IntMap a). To phrase
it in Agda, we need to replace the use of IntMap with FinMapMaybe and use Carrier and
deq in place of Eq a. These changes are necessary to use the previously defined checkInsert.
Furthermore, we need the monad bind operator _>>=_ from the standard library23.

_>>=_ : {α β : Set} → Maybe α→ (α→ Maybe β)→ Maybe β
nothing >>= _ = nothing
just a >>= f = f a

This version of the bind operator was rewritten to avoid using other parts of the standard
library. We arrive at an almost literal translation of the assoc function given earlier.

assoc : {m : N} → List (Fin m)→ List Carrier→
Maybe (FinMapMaybe m Carrier)

assoc [ ] [ ] = just empty
assoc (i :: is) [ ] = nothing
assoc [ ] (b :: bs) = nothing
assoc (i :: is) (b :: bs) = assoc is bs >>= checkInsert i b

The cases where the lists have different lengths consume two lines. What if assoc could
require the lists to have the same length? This could be enforced by requiring an explicit
proof object.

assoc : {m : N} → (is : List (Fin m))→ (bs : List Carrier)→
length is ≡ length bs→ Maybe (FinMapMaybe m Carrier)

The cases where the lengths differ would no longer have to be implemented. However,
Agda would need to be told explicitly that they cannot occur. So instead of going this
route, we will restrict the type of the lists.

The length is going to be part of the type and carried as a parameter given to Vec. An
implicit length parameter n is introduced ensuring that the lengths are the same.

assoc : {n m : N} → Vec (Fin m) n→ Vec Carrier n→
Maybe (FinMapMaybe m Carrier)

assoc {zero} [ ] [ ] = just empty
assoc {suc n} (i :: is) (b :: bs) = assoc is bs >>= checkInsert i b

23Data.Maybe
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Here we pattern match on the length of the fixed length lists. For each length, there
is only one possible Vec constructor available. Indeed the pattern match on the length
parameter can be dropped from the implementation as it can be inferred from the pattern
match on the vectors.

4 Transforming statements to Agda

We will now try to formulate and prove the first lemma given in Voigtländer (2009). The
only difference here is the change of the return type of assoc from Either to Maybe.

Lemma 1 (Voigtländer, 2009) For every is :: [Int], type τ that is an instance of
Eq, and f :: Int -> τ , we have

assoc is (map f is) ≡ Just h

for some h :: IntMap τ with

lookup i h ≡ if elem i is then Just (f i) else Nothing

for every i :: Int.

The use of ≡ in the above citation refers to semantic equality and therefore matches nicely
with the type _≡_ defined above. Translating this lemma to Agda still requires adapting
a few aspects. Where IntMap was used, we now use FinMapMaybe. Since our assoc
operates on Vec and expects Fin m instead of Int, we need to mention these parameters
at least implicitly. The use of map in a parameter of assoc means that we need a version
of map that works on Vec. It is readily available from the standard library24 and has the
following type.

mapVec : {n : N} {α β : Set} → (α→ β)→ Vec α n→ Vec β n

Observe that it retains the length of the passed Vec. Our implementation of Eq assumes
the global symbols Carrier and deq, so these are not introduced anymore.

Lemma 1′ Let m n : N. For every is : Vec (Fin m) n, and every f : Fin m → Carrier,
we have

assoc is (mapVec f is) ≡ just h

for some h : FinMapMaybe m Carrier, such that for every i : Fin m we have

lookup i h ≡ just (f i) if i is an element of is and nothing otherwise.

Compared to the original version, the most significant difference is the use of semantic
equality instead of an arbitrary equivalence relation captured by the type class Eq. This
resembles the original intention and cuts down the length of proofs considerably.
24Data.Vec
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Still the claimed existence of the element h is not very handy and we have not yet
considered how to explain its property to Agda. The intuitionistic nature would require
a proof to give an explicit element for h. Instead, we will consider being explicit about
what h is in the lemma itself. Observe that the claimed property on h uniquely defines it.
So we define a function that turns a given function and a list representing the desired
domain into a FinMapMaybe. To ease the definition, we use the functions zip and mapList
from the standard library25 that closely match their Haskell counterparts.

restrict : {α : Set} → {m : N} → (Fin m→ α)→ List (Fin m)→
FinMapMaybe m α

restrict f is = fromAscList (zip is (mapList f is))

Note that this definition does not necessarily provide an ascending list to fromAscList.
Given this function, we try to replace h with restrict f is. Except that, restrict wants a List
and we give a Vec. The standard library26 has a function that facilitates the conversion
process.

toList : {n : N} {α : Set} → Vec α n→ List α

Wrapping is in toList the application to restrict is type correct allowing us to proceed.
The property given on h holds by construction. We will therefore remove it from

our version of the lemma. Even though this yields a somewhat different assertion, the
resulting lemma will suffice to build on.

lemma-1 : {m n : N} → (is : Vec (Fin m) n)→ (f : Fin m→ Carrier)→
assoc is (mapVec f is) ≡ just (restrict f (toList is))

4.1 A proof

This version of lemma-1 is very convenient, because both assoc and restrict have the same
structure of successively inserting elements into empty. A paper proof would induct on the
list is and leave the details as an exercise to the reader like Voigtländer (2009). Instead,
we will use this induction as an example to see how Agda source is developed. Most
Agda source is written using the Emacs editor, due to its supportive agda2-mode. During
development, our code can contain holes. They are written as ? or {! !} and behave like
undefined in Haskell in that they can have any type. We use them to denote places that
we wish to defer writing down. The agda2-mode for Emacs provides a number of ways
working with them. For example, we can ask for the type of a particular hole. Details
on the usage of the editor can be found in the Agda wiki (WIKI). So here is our first
attempt to the lemma, writing a hole in place of a proof.

lemma-1 is f = {! !}
25Data.List
26Data.Vec
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The idea was to induct on is. An induction on a list nicely translates to branching on the
constructors, which is an operation provided by the editor environment and is called case
split. So we ask the editor to case split on the parameter is.

lemma-1 [ ] f = { ! !}
lemma-1 (i :: is) f = { ! !}

When we ask for the type of the first hole, we receive an equality type with reduced terms.
For instance, mapVec f [ ], as found on the left hand side, is reduced to [ ] using the base case
of the definition of mapVec. In fact, the type of the hole reduces to just empty ≡ just empty,
so we can use the refl constructor to prove the base case. Note that empty is not a fully
reduced form, because its first definition clause can be applied. When giving reductions,
we will use terms that are brief and bear some insight, but not necessarily fully reduced.
The reduction of the type of the second hole arrives at the following type.

assoc is (mapVec f is) >>= checkInsert i (f i) ≡ just (insert i (f i) (restrict f (toList is)))

To prove this statement, we will have to combine multiple results. One part is the
induction hypothesis and another part is some result about checkInsert behaving like insert
in this context. We already learned about the proof combinator trans, that expresses
transitivity of semantic equality. Instead of using it directly, we will use a few sugar
functions from the standard library27. Their aim is to improve readability of proofs for
humans. The technique is called equality reasoning and provides the functions begin_,
_≡〈_〉_ and _�. Instead of giving definitions, an example shall explain the usage.

begin term1

≡〈 proof1 〉
term2

≡〈 proof2 〉
term3 �

The above expression is a verbose form of trans proof1 proof2. Additionally, it tells the
reader about the types of the involved proofs. In the expression above, proof1 has the
type term1 ≡ term2, proof2 has the type term2 ≡ term3, and the whole expression has the
type term1 ≡ term3. Using this technique, we can extend our proof.

lemma-1 [ ] f = refl
lemma-1 (i :: is) f = begin

(assoc is (mapVec f is) >>= checkInsert i (f i))
≡〈 {! !} 〉

(just (restrict f (toList is)) >>= checkInsert i (f i))
≡〈 refl 〉

checkInsert i (f i) (restrict f (toList is))
≡〈 {! !} 〉

just (insert i (f i) (restrict f (toList is))) �

27Relation.Binary.PropositionalEquality.≡-Reasoning
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For clarity, we added a reduction step with the proof refl. This step adds no value from
a verification point of view, but it can make the proof easier to read. When looking at
the first hole, we observe that its type is similar to the induction hypothesis. We can fill
the hole by applying λ h→ h >>= checkInsert i (f i) to both sides of the hypothesis. This
operation is facilitated by the standard library28.

cong : {α β : Set} → {a b : α} → (f : α→ β)→ a ≡ b→ f a ≡ f b
cong f refl = refl

We use an editor operation called refine to improve said hole. To do that, we enter the
expression cong (λ h→ h >>= checkInsert i (f i)) in the hole and ask the editor to refine.
The agda2-mode then looks at the type to discover that the expression we gave does not
fully match the required type. It is a function whereas an equality proof was required.
Missing parameters are turned into new holes, so we turned one hole into another. The new
hole, we are told, has the shorter type assoc is (mapVec f is) ≡ just (restrict f (toList is)),
so we can directly insert our induction hypothesis lemma-1 f is. We defer the proof of the
other hole by introducing a new lemma.

lemma-checkInsert-restrict : {m : N} →
(f : Fin m→ Carrier)→ (i : Fin m)→ (is : List (Fin m))→
checkInsert i (f i) (restrict f is) ≡ just (restrict f (i :: is))

Assuming this lemma, we can complete the proof.

lemma-1 [ ] f = refl
lemma-1 (i :: is) f = begin

(assoc is (mapVec f is) >>= checkInsert i (f i))
≡〈 cong (λ h→ h >>= checkInsert i (f i)) (lemma-1 is f) 〉

(just (restrict f (toList is)) >>= checkInsert i (f i))
≡〈 refl 〉

checkInsert i (f i) (restrict f (toList is))
≡〈 lemma-checkInsert-restrict f i (toList is) 〉

just (insert i (f i) (restrict f (toList is))) �

4.2 Insight into checkInsert

In order to prove lemma-checkInsert-restrict, we introduce a technique presented by Norell
(2008). It is called view and shall not be confused with a view in a database or bidirec-
tionalization setting. In Agda, a view consists of a parameterized data type whose sole
purpose is to encode some insight about its parameters, and a function returning elements
of the view type. Similarly to GADTs, the constructors give elements of specific subtypes.
So by pattern matching on the constructors, we can learn something about the parameters
28Relation.Binary.PropositionalEquality
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of the data type. In fact, we already saw a slightly degenerated example of a view. It
was, the _≡_ type, which did not come with a corresponding function. Nevertheless,
matching on the refl constructor causes the type checker to unify the constructor type
with the parameter type. We used this unification in the proofs of cong, sym and trans.

The insight we want to gain here is a more abstract representation of the behaviour of
checkInsert. Looking at the definition, we can see that there are three possible outcomes.
If the element being inserted already is in the domain of the given mapping, it either
returns just the unchanged mapping or nothing. Otherwise it will insert the missing
element and return just an updated mapping. Some functions using the view we are about
to construct will need intermediate steps besides the case distinction. We therefore pass
additional insights gained in the process as constructor parameters.

data InsertionResult {m : N} (i : Fin m) (b : Carrier)
(h : FinMapMaybe m Carrier) : Maybe (FinMapMaybe m Carrier)→ Set where
same : lookup i h ≡ just b→ InsertionResult i b h (just h)
new : lookup i h ≡ nothing→ InsertionResult i b h (just (insert i b h))
wrong : (c : Carrier)→ b 6≡ c→ lookup i h ≡ just c→

InsertionResult i b h nothing

The outcomes of checkInsert correspond to the constructors of InsertionResult. For each
constructor, the actual outcome can be found in the last type parameter of the type. The
simplest constructor is new. It comes with a proof of the failure of lookup. In the same
constructor, we not only learn that lookup is successful. The result of lookup is precisely
the value we were trying to insert. In the wrong constructor, we learn about an element
different from b to be the result of lookup.
We specialize the type to InsertionResult i b h (checkInsert i b h) when constructing

elements of the view. Pattern matching a constructor will then cause the checkInsert term
to be unified with the expected outcome of the respective constructor. This is similar to
matching the refl constructor of _≡_. We still need the function returning elements of
InsertionResult.

insertionresult : {m : N} → (i : Fin m)→ (b : Carrier)→
(h : FinMapMaybe m Carrier)→
InsertionResult i b h (checkInsert i b h)

We need to examine the same expressions as in the checkInsert definition in order to reduce
the application of checkInsert used in the result type of insertionresult. So we add with
constructs for the contained lookup and deq calls. The created holes can be immediately
refined to the corresponding constructors, since the checkInsert call reduces to the terms
given in the constructor types. Using a different constructor than the intended one in any
of the holes causes a type error.

insertionresult i b h with lookup i h
... | nothing = new { ! !}
... | just c with deq b c
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... | yes b≡c = same {! !}

... | no b6≡c = wrong c b6≡c { ! !}

Looking at the new case, we still need a proof of lookup i h ≡ nothing. It seems to
be immediate as we just discovered it by case splitting on the result of lookup i h.
Unfortunately, the connection between the reduced term nothing and the unreduced term
lookup i h is lost.

The standard library29 comes to the rescue with its inspect function. It takes a function
f and a parameter x to f and gives an object that remembers the connection between a
deferred application f x and an immediate one. Its result can be pattern matched using the
sole constructor [_ ], whose parameter has the type f x ≡ y if y is the immediate application
f x with term reduction applied. A simplified but sufficient definition and explanation can
be found in Norell (2008). Trusting this sketch, we add an inspect (lookup i) h to the first
with.

insertionresult i b h with lookup i h | inspect (lookup i) h
insertionresult i b h | nothing | [p] = new p
insertionresult i b h | just c | [p] with deq b c
insertionresult i b h | just c | [p] | yes b≡c = same {! !}
insertionresult i b h | just c | [p] | no b6≡c = wrong c b6≡c p

Note that, when introducing multiple expressions into a with, those expressions are
separated by | signs. The parameter p of the [_] constructor of the inspect result
immediately fills the holes in the parameters of new and wrong, but not of same. Observe
how the type of p depends on the reduction of the lookup by looking at the definition
of InsertionResult. In the same constructor, we claimed that the lookup would result in
precisely the b passed. So far, we only know that it results in some c and we have a proof
of b ≡ c.
To solve this issue, we case split on b≡c in the parameter of yes. In this process, the

text editor replaces b≡c with refl and the unification of the constructor type with the
parameter type causes c to be replaced with b. Since c occurs as an explicit parameter,
it is replaced with .b, which is an example of a dot pattern. By prefixing a term with
a dot, we tell the compiler that this term shall be inferred by type checking, instead of
being a free parameter or pattern match. Mentioning a variable twice on the left hand
side without any dot simply is an error. Most of the time, dot patterns are not written
down explicitly, but generated as part of a case split operation.

insertionresult i b h | just .b | [p] | yes refl = same p

4.3 Missing parts for lemma-1

We will now use the machinery created in the previous section to prove the missing
lemma-checkInsert-restrict. First of all, let us recall what it asserts.
29Relation.Binary.PropositionalEquality
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lemma-checkInsert-restrict : {m : N} →
(f : Fin m→ Carrier)→ (i : Fin m)→ (is : List (Fin m))→
checkInsert i (f i) (restrict f is) ≡ just (restrict f (i :: is))

We are mainly reasoning about the result of a checkInsert here, so we can immediately
employ the previously constructed view.

lemma-checkInsert-restrict f i is with insertionresult i (f i) (restrict f is)
... | r = {! !}

Unfortunately, the attempt to case split r fails, because some types do not unify. When
inserting a constructor here, its type should unify with the result type of the insertionresult
call. Both types are equal, except for their last parameter of InsertionResult. That
last parameter is a checkInsert call in the return type of insertionresult and a particular
outcome in the type of each InsertionResult constructor. None of these terms can be
reduced without introducing them in a new with. So we put the checkInsert term in a
with, without actually being interested in seeing its reductions.

lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is)
| insertionresult i (f i) (restrict f is)

lemma-checkInsert-restrict f i is | ._ | same p = { ! !}
lemma-checkInsert-restrict f i is | ._ | new _ = refl
lemma-checkInsert-restrict f i is | ._ | wrong c fi6≡c p = { ! !}

We replaced the boring reductions with underscores. They still carry the dots that tell
the compiler to infer those terms. We observe that the right hand side of the goal reduces
to just (insert i (f i) (restrict f is)). The new case turned out to be trivial, since checkInsert
produces the very same insert call in this case. We need more lemmata for the other holes.
For the same case, the left hand side does not contain an insert call that made the new
case trivial. We need to prove that it can be dropped from the right hand side. This
insight can be formulated as follows.

lemma-insert-same : {τ : Set} {m : N} → (h : FinMapMaybe m τ)→
(i : Fin m)→ (a : τ)→ lookup i h ≡ just a→ h ≡ insert i a h

Note that this function takes a proof of the success of lookup as a parameter. We can see
that preconditions are turned into universal quantifiers on proof objects in Agda.
To prove this lemma, we will have to follow the definition of insert. It inducts simul-

taneously on h and i. h is a Vec, so if it is [ ], then m is zero. Notice that there is no
constructor for an element i of Fin zero, so we can use the absurd pattern to cover this
case.

lemma-insert-same [ ] () a p
lemma-insert-same (.(just a) :: xs) zero a refl = refl
lemma-insert-same (x :: xs) (suc i) a p =

cong (_::_ x) (lemma-insert-same xs i a p)
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Accessing the proof p is done by case splitting as is done in the proof of cong. The split is
successful in the base case, because the lookup call can be reduced to the head of h when
i is zero and we have a free variable x for that head. So the dot pattern replaces just x
and not the whole map h. The recursive case follows from the induction hypothesis.

Back to lemma-checkInsert-restrict, we want to see that the wrong case actually cannot
occur. We will therefore obtain a proof of f i ≡ c, which contradicts the fi6≡c parameter of
the constructor wrong.

lemma-lookup-restrict : {α : Set} {m : N} → (i : Fin m)→ (f : Fin m→ α)→
(is : List (Fin m))→ (a : α)→ lookup i (restrict f is) ≡ just a→ f i ≡ a

Actually proving this lemma takes a few more steps and further lemmata. The general
idea is to induct on the passed list is. The base case is absurd, because lookup is required
to succeed. In the recursive case, we branch on whether the element i being looked up is
the same as the head element of the passed list is. If we discover that those elements are
equal, we can finish the proof. Otherwise we drop the head of the list and continue. For
expressing the proof to Agda, it is helpful to add a few smaller lemmata. They can all be
proven using inductive arguments.

lemma-lookup-empty : {α : Set} {m : N} → (i : Fin m)→
lookup {α = Maybe α} i empty ≡ nothing

lemma-lookup-insert : {α : Set} {m : N} → (i : Fin m)→ (a : α)→
(h : FinMapMaybe m α)→ lookup i (insert i a h) ≡ just a

lemma-lookup-insert-other : {α : Set} {m : N} → (i j : Fin m)→ (a : α)→
(h : FinMapMaybe m α)→ i 6≡ j→ lookup i h ≡ lookup i (insert j a h)

Note that lemma-lookup-empty explicitly gives a value for the implicit parameter named
α of the lookup function. Otherwise Agda would be unable to figure the content type of
the Maybe returned by lookup. Accessing implicit parameters by name is also allowed in
function clauses.
With all of these lemmata in place, we could pass a proof of f i ≡ c to fi6≡c, which

results in an element of ⊥. This application could be introduced using another with.
Instead, we will use another helper function from the standard library30 for convenience.

contradiction : {P : Set} {Whatever : Set} → P→ ¬ P→Whatever
contradiction p ¬p with ¬p p
... | ()

Assuming lemma-insert-same and lemma-lookup-restrict, we can complete the proof of
lemmata-checkInsert-restrict.

lemma-checkInsert-restrict f i is with checkInsert i (f i) (restrict f is)
| insertionresult i (f i) (restrict f is)

lemma-checkInsert-restrict f i is | ._ | same p = cong just

30Relation.Nullary.Negation
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(lemma-insert-same _ i (f i) p)
lemma-checkInsert-restrict f i is | ._ | new _ = refl
lemma-checkInsert-restrict f i is | ._ | wrong c fi6≡c p = contradiction

(lemma-lookup-restrict i f is c p) fi6≡c

Note that we did not spell out the map that is passed to lemma-insert-same and used the
placeholder _ instead. Doing so is valid, because in the map can be deduced from the
proof p passed later. So we turned an explicit parameter into an implicit one.

5 Main proof

After having seen how to formalize lemma-1, we want to continue with the second lemma
exploring utilities as needed. In this process, we will characterize the domain of a
FinMapMaybe in a positive way. Only then, we will give the Agda implementation of bff,
because developing its type is elaborate. Formulating and proving the lens laws then
mostly is a matter of fitting the pieces together.

5.1 Lemma 2

For formulating the second lemma from Voigtländer (2009), we already have most of the
building blocks. After renaming of basic constructs, importing the flip function matching
its Haskell counterpart from the standard library31 and using the module parameters
Carrier and deq, it can be written as follows.

Lemma 2 (Voigtländer, 2009) Let m n : N, is : Vec (Fin m) n, v : Vec Carrier n,
and h : FinMapMaybe m Carrier. We have that if

assoc is v ≡ just h,

then

mapVec (flip lookup h) is ≡ mapVec just v.

Unlike the original version, we explicitly require that is and v are of the same length.
assoc needs this property to succeed. So the length requirement is not an additional
restriction. We turn the success requirement into a another parameter like we did with
lemma-insert-same. Thus we can strip the prose.

lemma-2 : {m n : N} → (is : Vec (Fin m) n)→ (v : Vec Carrier n)→
(h : FinMapMaybe m Carrier)→ assoc is v ≡ just h→
mapVec (flip lookup h) is ≡ mapVec just v

Following the hint in Voigtländer (2009), we induct on is. Consequently we have to induct
on n and therefore on v as well. Due to term reduction the base case is immediate.
31Function
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lemma-2 [ ] [ ] h ph = refl
lemma-2 (i :: is) (b :: bs) h ph = { ! !}

Naturally we want to employ the induction hypothesis. To invoke it, we need an element
of assoc is bs ≡ just h′ for some h′. One way to obtain h′ is to evaluate assoc is bs and
hope that its result is just h′. We use the with keyword to introduce a new parameter to
evaluate.

lemma-2 (i :: is) (b :: bs) h ph with assoc is bs
... | nothing = {! !}
... | just h′ = {! !}

At this point, we cannot immediately claim that the result is not nothing. Looking back
at our definition of assoc, we can see that if the recursive call fails, then so does the
whole call. To explain this insight to Agda, let us revisit the type of ph. Originally it was
assoc is bs ≡ just h. The assoc call in that type is subject to term reduction after the case
distinction. So in the nothing case the type of ph has changed to nothing ≡ just h. There
is no constructor for that type since both parameters to _≡_ have their outermost calls
fully reduced. When we case split ph, the editor mode replaces it with the absurd pattern.

lemma-2 (i :: is) (b :: bs) h ph with assoc is bs
lemma-2 (i :: is) (b :: bs) h () | nothing
... | just h′ = {! !}

Now we have the resulting h′, but we still need a proof of assoc is bs ≡ just h′. This
connection can be established using inspect again.

lemma-2 (i :: is) (b :: bs) h ph with assoc is bs | inspect (assoc is) bs
lemma-2 (i :: is) (b :: bs) h () | nothing | [ph′ ]
... | just h′ | [ph′ ] = { ! !}

The parameter ph′ now has the intended type, so we can use the induction hypothesis
lemma-2 is bs h′ ph′. As we did in lemma-1, we try to prove the head and the tail
independently.

lemma-2 (i :: is) (b :: bs) h ph | just h′ | [ph′ ] = begin
lookup i h :: mapVec (flip lookup h) is
≡〈 cong (flip _::_ (mapVec (flip lookup h) is)) {! !} 〉

just b :: mapVec (flip lookup h) is
≡〈 cong (_::_ (just b)) { ! !} 〉

just b :: mapVec just bs �

Instead of solving the first hole here, we move it to a separate lemma.

lemma-lookup-assoc : {m n : N} → (i : Fin m)→ (is : Vec (Fin m) n)→
(b : Carrier)→ (bs : Vec Carrier n)→ (h : FinMapMaybe m Carrier)→
assoc (i :: is) (b :: bs) ≡ just h→ lookup i h ≡ just b
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Since assoc boils down to repeatedly calling checkInsert, it can be proven by employing
the insertionresult view in a similar way as we used for lemma-checkInsert-restrict. The
only non-trivial case is new, where an inductive argument is needed.
At first, the second hole might look like the induction hypothesis. Unfortunately, the

map that we use to lookup is h, whereas the induction hypothesis would expect h′ there.
The difference between those maps is an additional checkInsert call, so we should get the
same result using either map for the proof to succeed. Inserting an additional step, we
can finally apply the induction hypothesis.

lemma-2 (i :: is) (b :: bs) h ph | just h′ | [ph′ ] = begin
lookup i h :: mapVec (flip lookup h) is
≡〈 cong (flip _::_ (mapVec (flip lookup h) is))

(lemma-lookup-assoc i is b bs h { ! !}) 〉
just b :: mapVec (flip lookup h) is
≡〈 cong (_::_ (just b)) { ! !} 〉

just b :: mapVec (flip lookup h′) is
≡〈 cong (_::_ (just b)) (lemma-2 is bs h′ ph′) 〉

just b :: mapVec just bs �

The first hole looks as if ph should fit in there, but it does not. By evaluating assoc is bs,
we learned a bit about ph. This allowed us to refute its existence in the nothing case. The
just case is also affected, so here ph has the type checkInsert i b h′ ≡ just h. To revert the
term reduction, we combine it with ph′, which still carries a part of the original type on
the left hand side.

We will defer the second hole to another lemma again. It is rather specific and we will
spend the next section on its proof.

lemma-2-change-mapping : {m n : N} → (i : Fin m)→ (is : Vec (Fin m) n)→
(b : Carrier)→ (bs : Vec Carrier n)→ (h : FinMapMaybe m Carrier)→
(h′ : FinMapMaybe m Carrier)→ assoc is bs ≡ just h′ →
checkInsert i b h′ ≡ just h→
mapVec (flip lookup h) is ≡ mapVec (flip lookup h′) is

Assuming lemma-lookup-assoc and lemma-2-change-mapping, we can almost complete the
proof. The first attempt fails to type check, because some types cannot be uniquely
inferred we are told. Indeed, a little ambiguity resides in the use of _::_. It is both a
constructor for List and Vec. Disambiguating the one in the first cong usage is enough to
solve this case.

lemma-2 (i :: is) (b :: bs) h ph | just h′ | [ph′ ] = begin
lookup i h :: mapVec (flip lookup h) is
≡〈 cong (flip _::Vec_ (mapVec (flip lookup h) is))

(lemma-lookup-assoc i is b bs h origph) 〉
just b :: mapVec (flip lookup h) is
≡〈 cong (_::_ (just b)) (lemma-2-change-mapping i is b bs h h′ ph′ ph) 〉
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just b :: mapVec (flip lookup h′) is
≡〈 cong (_::_ (just b)) (lemma-2 is bs h′ ph′) 〉

just b :: mapVec just bs �
where origph = trans (cong (flip _>>=_ (checkInsert i b)) ph′) ph

5.2 Domain of a FinMapMaybe

The last missing piece for lemma-2 is lemma-2-change-mapping. In it, we are using the list
is in two different contexts. It is used to construct the mapping h′ and is used as a list to
map over. Why are we not using different lists here? The choice made guarantees that
all lookups succeed. Without this property, the additional checkInsert used to construct
h from h′ could change a failing lookup from the right hand side to succeed on the left
hand side. Simply using different lists leads us to a wrong statement. In fact, this double
usage of is makes an inductive proof on is impossible. The induction hypothesis would
talk about different mappings h and h′ that would not be suitable for the tail of the map.

So we have to disentangle is into two lists is and js where is shall be used to construct
h′ and js shall be used in the map calls. We need to require that all lookups of elements
of js in h′ succeed. Formulating this property requires another look into the standard
library32.

data All {α : Set} (P : α→ Set) : List α→ Set where
[ ] : All P [ ]
_::_ : {x : α} {xs : List α} → P x→ All P xs→ All P (x :: xs)

This type allows us to require a parameterized property for each element of a List. Like
for List and Vec, there also is a mapAll function in the standard library32. For a given
element i, the desired property is that lookup i h′ results in a just constructor. We do not
want to claim anything about the parameter of that just constructor besides its existence.

We need another tool to express the existential quantifier. This can be addressed using
the dependent pair, as defined in the standard library33, by using a special record syntax.

record Σ (α : Set) (β : α→ Set) : Set where
constructor _,_
field

proj1 : α
proj2 : β proj1

Without the record syntax, we would have to express this type using the data keyword
and define the projections as functions. The equivalent written using data is rather longer
than the previous definition.

32Data.List.All
33Data.Product
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data Σ (α : Set) (β : α→ Set) : Set where
_,_ : (a : α)→ β a→ Σ α β

proj1 : {α : Set} {β : α→ Set} → Σ α β → α
proj1 (a ,_) = a
proj2 : {α : Set} {β : α→ Set} → (s : Σ α β)→ β (proj1 s)
proj2 (_ , b) = b

In contrast, the independent pair would make the parameter β not to depend on α. So
the definition of _×_, as used to define fromAscList, is a special case of the dependent
pair.

_×_ : (α β : Set)→ Set
α × β = Σ α (const β)

The standard library34 also contains a sugar function for turning the first parameter of Σ
into an implicit one.

∃ : {α : Set} → (α→ Set)→ Set
∃ = Σ _

With ∃ we can write a type that depends on an unexplained value that shall exist. In
the spirit of intuitionistic logic, an inhabitant then consists of an actual element that is
claimed to exist and a proof of the desired property about this element. Now we can
express what it means for an element m of Maybe Carrier to have a just constructor using
∃ λ x→ m ≡ just x. Then we can replace m with our lookup call and plug it into All.

_in-domain-of_ : {m : N} → (is : List (Fin m))→ (FinMapMaybe m Carrier)→
Set

_in-domain-of_ is h = All (λ i→ ∃ λ x→ lookup i h ≡ just x) is

Before moving on to use this property, let us prove that it is actually satisfiable. To that
end, we remember that it is satisfied when the mapping is constructed using assoc.

lemma-assoc-domain : {m n : N} → (is : Vec (Fin m) n)→
(bs : Vec Carrier n)→ (h : FinMapMaybe m Carrier)→ assoc is bs ≡ just h→
(toList is) in-domain-of h

To ease the proof, we introduce another lemma saying that an additional checkInsert call
does not change a succeeding lookup.

lemma-lookup-checkInsert : {m : N} → (i j : Fin m)→ (b c : Carrier)→
(h h′ : FinMapMaybe m Carrier)→ lookup i h ≡ just b→
checkInsert j c h ≡ just h′ → lookup i h′ ≡ just b

It can be proven using the insertionresult view. The same case is immediate, the wrong
case is absurd and the interesting case is new. There we need to determine that i and j
are different to be able to use lemma-lookup-insert-other.
34Data.Product
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Back to the proof of lemma-assoc-domain, we will induct on n. The base case is
immediate. In the induction step, we put the assoc call in a with and refute the nothing
result, like we did in lemma-2. We also put the assoc call in an inspect, because we will
need it later.

lemma-assoc-domain [ ] [ ] h ph = [ ]
lemma-assoc-domain (i :: is) (b :: bs) h ph with assoc is bs | inspect (assoc is) bs
lemma-assoc-domain (i :: is) (b :: bs) h () | nothing | [ph′ ]
lemma-assoc-domain (i :: is) (b :: bs) h ph | just h′ | [ph′ ] = {! !}

When asked for the type of ph, Agda will answer checkInsert i b h′ ≡ just h. The checkInsert
call comes from the recursive clause of assoc. Now we dissect the checkInsert call using
the insertionresult view. So we put both the checkInsert call and the view in a with. In
addition we also inspect the checkInsert call, because we will need it later as well. The
wrong case from the view can be easily refuted using ph and the same case works out fine.
Just for new there is more work to do.

lemma-assoc-domain (i :: is) (b :: bs) h ph | just h′ | [ph′ ] with checkInsert i b h′

| inspect (checkInsert i b) h′ | insertionresult i b h′

lemma-assoc-domain (i :: is) (b :: bs) h () | just h′ | [ph′ ] | ._
| _ | wrong _ _ _

lemma-assoc-domain (i :: is) (b :: bs) .h′ refl | just h′ | [ph′ ] | ._
| _ | same pl = (b , pl) :: (lemma-assoc-domain is bs h′ ph′)

lemma-assoc-domain (i :: is) (b :: bs) ._ refl | just h′ | [ph′ ] | ._
| [pc] | new _ = {! !}

In the head of the _in-domain-of_ to be constructed we are lucky. The element being
looked up is the one we just inserted and we can reuse lemma-lookup-insert. The tail is
where things get interesting, because we need to replace h′ from the induction hypothesis
by h. We already know that they differ by an actual insertion due to the case distinction of
insertionresult. Here we choose not use that information, but revert it using pc. That way,
we can use lemma-lookup-checkInsert and avoid having to prove i 6≡ j if j is the element
being looked up.

lemma-assoc-domain (i :: is) (b :: bs) ._ refl | just h′ | [ph′ ] | ._ | [pc]
| new _ = (b , lemma-lookup-insert i b h′) ::

(mapAll
(λ { j} p→ proj1 p ,

lemma-lookup-checkInsert j i (proj1 p) b h′

(insert i b h′) (proj2 p) pc)
(lemma-assoc-domain is bs h′ ph′))

After completing lemma-assoc-domain, we remember that the goal was to find a better
formulation of lemma-2-change-mapping that permits us to do an induction. Our idea was
to use two lists is for the assoc invocation and js to map over. But we no longer need
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to know that the given mapping h′ is constructed using assoc. All we need to know is
(toList js) in-domain-of h′.

lemma-map-lookup-assoc : {m n : N} → (i : Fin m)→ (b : Carrier)→
(h h′ : FinMapMaybe m Carrier)→ checkInsert i b h′ ≡ just h→
(js : Vec (Fin m) n)→ (toList js) in-domain-of h′ →
mapVec (flip lookup h) js ≡ mapVec (flip lookup h′) js

With this lemma and lemma-assoc-domain, we can easily prove the missing piece of
lemma-2.

lemma-2-change-mapping i is b bs h h′ ph′ ph =
lemma-map-lookup-assoc i b h h′ ph is (lemma-assoc-domain is bs h′ ph′)

Before moving on to prove the now missing piece, we look at a sibling of cong in the
standard library35. It will allow us to treat the head and tail of the pending Vec equality
independently.

cong2 : {α β γ : Set} {a a′ : α} {b b′ : β} →
(f : α→ β → γ)→ a ≡ a′ → b ≡ b′ → f a b ≡ f a′ b′

cong2 f refl refl = refl

We remember that the idea was to use induction on js to prove lemma-map-lookup-assoc.
As usual, the base case is immediate. Since most of the complexity went into the parameter
that can be constructed using lemma-assoc-domain, the only interesting part is to prove
the equation lookup j h ≡ lookup j h′ for the head of js. The tail equality is the induction
hypothesis.

lemma-map-lookup-assoc i b h h′ ph [ ] pj = refl
lemma-map-lookup-assoc i b h h′ ph (j :: js) ((c , pl) :: pj) = cong2 _::_

(trans (lemma-lookup-checkInsert j i c b h′ h pl ph) (sym pl))
(lemma-map-lookup-assoc i b h h′ ph js pj)

5.3 Polymorphism and Vec

Let us look at a first attempt to the Agda type of the bff function.

bff : ({α : Set} → List α→ List α)→
({α : Set} → {(x y : α)→ Dec (x ≡ y)} → List α→ List α→ List α)

Unlike the Haskell version, we can directly express it without the need for the RankNTypes
compiler extension. Taking a look back at our definition of assoc, we remember that we
are using Vec instead of List. For easier reasoning, we should use Vec for bff, too. A first
35Relation.Binary.PropositionalEquality
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attempt gets stuck in the return type though. Since this issue will require more thought,
we will abandon bff for now and just concentrate on the type of its first parameter.

get : {α : Set} → {n : N} → Vec α n→ Vec α { ! !}

We need a way to specify the length of the returned Vec. To fill this hole, we need to
look a bit further and invoke the corresponding free theorem, as given in Wadler (1989).
We will not prove this result and therefore just tell Agda to assume it.

postulate
free-theoremList : (get : {α : Set} → List α→ List α)→ {β γ : Set} →

(f : β → γ)→ (l : List β)→ get (mapList f l) ≡ mapList f (get l)

One motivation given for the introduction of free theorems is the intuition that the length
of the list returned from get should be independent of the contents of the passed list and
only depend on the length. Using this intuition, we can give a type for get.

get : {getlen : N→ N} → {α : Set} → {n : N} → Vec α n→ Vec α (getlen n)

So we need a way to obtain such a getlen function. Our attempt will use the replicateList
function, matching its Haskell counterpart from the standard library36, to construct a
template list of a given length. Since we do not care about the contents of the template,
we use the sole element tt of the unit type from the standard library37.

getList-to-getlen : ({α : Set} → List α→ List α)→ N→ N
getList-to-getlen get = length ◦ get ◦ flip replicateList tt

Then we pass the template through get and compute its length. This definition gives us a
function of the desired type, but we still want some justification that it works for types
other than the unit type as well.

getList-length : (get : {α : Set} → List α→ List α)→
{β : Set} → (l : List β)→
length (get l) ≡ getList-to-getlen get (length l)

To prove this result, we introduce a call to mapList outside the application of get and use
the free-theoremList to swap it with get. In the parameter of get, we can then turn it into
the desired replicateList call.

getList-length get l = begin
length (get l)
≡〈 {! !} 〉

length (mapList (const tt) (get l))
≡〈 cong length {! !} 〉

36Data.List
37Data.Unit
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length (get (mapList (const tt) l))
≡〈 cong (length ◦ get) {! !} 〉

length (get (replicateList (length l) tt)) �

Fortunately, the first hole is filled by standard library38.

length-map : {α β Set} → (f : α→ β)→ (xs : List α)→
length (mapList f xs) ≡ length xs

Well it does not fit exactly. The sides of the equation are flipped. We can adjust it using
the symmetry property sym. The second hole is our free theorem, again flipping the sides
of the equation. Lacking a suitable function in the standard library, we will leave the last
hole as an exercise to the reader and just give its type.

replicate-length : {α : Set} → (l : List α)→
mapList (const tt) l ≡ replicateList (length l) tt

Now we can complete getList-length.

getList-length get l = begin
length (get l)
≡〈 sym (length-map (const tt) (get l)) 〉

length (mapList (const tt) (get l))
≡〈 cong length (sym (free-theoremList get (const tt) l)) 〉

length (get (mapList (const tt) l))
≡〈 cong (length ◦ get) (replicate-length l) 〉

length (get (replicateList (length l) tt)) �

Given this result, we have an idea of how any List based get function can be transformed
into a Vec based one. We will not further this exercise and instead just use the Vec based
type from now on.

5.4 bff

Equipped with a type for get, we can improve the type of bff. While doing so, we also
use the module parameters Carrier and deq.

bff : ({getlen : N→ N} → {α : Set} → {n : N} →
Vec α n→ Vec α (getlen n))→
Vec Carrier { ! !} → Vec Carrier {! !} → Vec Carrier { ! !}

Before tackling the holes, we look back at the Haskell definition of bff. It uses the
fromJust function, that produces a runtime error when given the value Nothing. Since
partial functions are not allowed in Agda, we need to encapsulate the return type of bff
38Data.List.Properties
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in a Maybe. Voigtländer et al. (2010) revised the type of bff to allow arbitrary monads
in place of Maybe.
To determine the lengths, we look back at the lens definition for put : S × V → S. So

the first and third hole denote the length of Vecs from the source domain and the second
hole denotes the length of a Vec from view domain. Since get maps source to view, the
length relation getlen should apply here, too. Just getlen is not in scope, so we have to
move it out of the first parameter.

bff : {getlen : N→ N} →
({α : Set} → {n : N} → Vec α n→ Vec α (getlen n))→
{n : N} → Vec Carrier n→ Vec Carrier (getlen n)→ Maybe (Vec Carrier n)

Before transferring the implementation, we need a some utilities again. Since we have
no syntactic sugar for lists, we also have no ellipse notation like [0..n]. Observing that
we only use this construct in the form [0 .. length l - 1], we define a helper for
constructing such ranges. At this point, we obtain a trivial bound on the numbers we
work with.

enumerate : {n : N} → Vec Carrier n→ Vec (Fin n) n
enumerate _ = tabulate id

Another part of the Haskell bff function is fromAscList (zip s’ s) where s’ and s
are lists as follows. s is the second parameter of bff and we note its length as n. Then
[0 .. n - 1] is bound to s’. So the expression considered really gives a fully defined
mapping from Fin n into the element type of s, which is Carrier here. We defined the
type FinMap m Carrier for such mappings earlier. To obtain a FinMap, we first compute
a function Fin n → Carrier and then apply tabulate. Our next helper will compute said
function from s.

denumerate : {n : N} → Vec Carrier n→ Fin n→ Carrier
denumerate = flip lookup

The names suggest some variant of an inversion property. It exists and is easy to prove
by induction using map-◦ and tabulate-◦ from the standard library39.

lemma-map-denumerate-enumerate : {n : N} → (bs : Vec Carrier n)→
mapVec (denumerate bs) (enumerate bs) ≡ bs

As a last piece we need to use Maybe as a functor to operate on the wrapped values. Like
its Haskell counterpart, it is named _<$>_ and defined in the standard library40.

_<$>_ : {α β : Set} → (α→ β)→ Maybe α→ Maybe β
f <$> nothing = nothing
f <$> (just a) = just (f a)

39Data.Vec.Properties
40Data.Maybe
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Like the monad bind operator, this version was rewritten to not rely on other parts of
the standard library.

bff get s v = let s′ = enumerate s
g = tabulate (denumerate s)
h = assoc (get s′) v
h′ = (flip union g) <$> h

in (flip mapVec s′ ◦ flip lookup) <$> h′

Note that, due to g being a FinMap, the application to union is correct. It validates our
claim that the second parameter would be fully defined. Furthermore, the result of union
is fully defined. This eliminates the need for error, which cannot be defined in Agda. It
was needed to drop the Either container from the result of assoc in the Haskell version.
Without the distinction into partially and fully defined maps, we would have a hard time
proving that the lookup succeeds in any case.
Another remark is that whenever assoc succeeds so does bbf. This was not as easy

to see in the original definition since Haskell does not force the programmer to exhibit
undefinedness using Maybe. Let us phrase this remark in Agda. Proving it then is a
matter of applying the remaining steps of bff to the result of assoc.

lemma-assoc-enough : {getlen : N→ N} →
(get : {α : Set} → {n : N} → Vec α n→ Vec α (getlen n))→
{n : N} → (s : Vec Carrier n)→ (v : Vec Carrier (getlen n))→
∃ (λ h→ assoc (get (enumerate s)) v ≡ just h)→ ∃ λ u→ bff get s v ≡ just u

lemma-assoc-enough get s v (h , p) =
u , cong (_<$>_ (flip mapVec s′ ◦ flip lookup) ◦ _<$>_ (flip union g)) p
where s′ = enumerate s

g = tabulate (denumerate s)
u = mapVec (flip lookup (union h g)) s′

Our choice to explicitly propagate failures from assoc also removes the need for seq,
as used in the original version. This failure mode is now encapsulated in the usage of
_<$>_.

5.5 GetPut

Formalizing the first theorem from Voigtländer (2009) is now straight forward. As usual,
we have to replace the Eq type class and use the type of get defined for usage with our bff.
Moreover, the statement that bff is actually defined on the particular input is explicitly
spelled out in the usage of just.

theorem-1 : {getlen : N→ N} →
(get : {α : Set} → {n : N} → Vec α n→ Vec α (getlen n))→
{n : N} → (s : Vec Carrier n)→ bff get s (get s) ≡ just s

We will now develop the proof to be found in Listing 1. The original proof given in Voigtlän-
der (2009) first uses a property that we established as lemma-map-denumerate-enumerate.
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It is used to expand the parameter s of get to a form using mapVec. The resulting term
contains a composition of get and mapVec in order to apply the free theorem. Previously,
we defined the free theorem to work on List, but we need a version on Vec now. So we
are claiming that it exists for Vec as well.

postulate
free-theoremVec : {getlen : N→ N} →

(get : {α : Set} → {n : N} → Vec α n→ Vec α (getlen n))→
{β γ : Set} → (f : β → γ)→ {n : N} → (l : Vec β n)→
get (mapVec f l) ≡ mapVec f (get l)

After the application of the free-theoremVec, we are supposed to use lemma-1. To do that,
we need to expand the usage of bff. We explicitly write down this step and similar steps
using refl to improve readability. Since the expansion is very long, we move common
subexpressions to the local bindings h7→h′ and h′ 7→r. The remainder of the proof, we are
told in Voigtländer (2009), is done by looking at the specifications of utility functions. A
mere look is not enough for Agda though, so we first expand h7→h′ to see the usage of
union. We can see that both parameters to union are constructed using denumerate s. The
second mapping passed to union actually extends the first. Its domain is a superset of the
domain of the restricted mapping. In this case, the result of union is the second mapping.

lemma-union-restrict : {m : N} → {α : Set} →
(f : Fin m→ α)→ (is : List (Fin m))→
union (restrict f is) (tabulate f) ≡ tabulate f

We skip the proof for now. After expanding h′ 7→r, we can spot a composition of lookup
and tabulate. Those functions are somewhat inverse, so we might expect that their
composition is the identity. However, this property does not hold, because Agda has no
extensionality on functions. We can only prove that the composition is pointwise equal to
the identity. To get an idea what that means, we have a look at a simplified version of
pointwise equality defined in the standard library41.

_$_ : {α β : Set} → (f g : α→ β)→ Set
_$_ {α} f g = (x : α)→ f x ≡ g x

Using a different notion of equality means that we cannot use cong to apply such a
property, as it can only deal with semantic equality. The standard library42 provides
the statement about the composition called lookup◦tabulate and map-cong, which is able
to apply it to mapVec. Finally we can apply lemma-map-denumerate-enumerate again to
reduce our initial expansion and receive the desired result.
To sketch the proof of the skipped lemma-union-restrict, we remember that union was

defined using tabulate. Since both sides of the equation are wrapped in tabulate calls, we
introduce a new lemma to be proven by the reader.
41Relation.Binary.PropositionalEquality
42Data.Vec.Properties
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theorem-1 get s = let h7→h′ = _<$>_ (flip union (tabulate (denumerate s)))
h′ 7→r = _<$>_ (flip mapVec (enumerate s) ◦ flip lookup)

in begin
bff get s (get s)
≡〈 cong (bff get s ◦ get) (sym (lemma-map-denumerate-enumerate s)) 〉

bff get s (get (mapVec (denumerate s) (enumerate s)))
≡〈 cong (bff get s) (free-theoremVec get (denumerate s) (enumerate s)) 〉

bff get s (mapVec (denumerate s) (get (enumerate s)))
≡〈 refl 〉

(h′ 7→r ◦ h7→h′) (assoc (get (enumerate s))
(mapVec (denumerate s) (get (enumerate s))))

≡〈 cong (h′ 7→r ◦ h7→h′) (lemma-1 (get (enumerate s)) (denumerate s)) 〉
(h′ 7→r ◦ h7→h′ ◦ just) (restrict (denumerate s) (toList (get (enumerate s))))
≡〈 refl 〉

(h′ 7→r ◦ just) (union (restrict (denumerate s) (toList (get (enumerate s))))
(tabulate (denumerate s)))

≡〈 cong (h′ 7→r ◦ just) (lemma-union-restrict (denumerate s)
(toList (get (enumerate s)))) 〉

(h′ 7→r ◦ just) (tabulate (denumerate s))
≡〈 refl 〉

just (mapVec (flip lookup (tabulate (denumerate s))) (enumerate s))
≡〈 cong just (map-cong (lookup◦tabulate (denumerate s)) (enumerate s)) 〉

just (mapVec (denumerate s) (enumerate s))
≡〈 cong just (lemma-map-denumerate-enumerate s) 〉

just s �

Listing 1: Proof for theorem-1

lemma-tabulate-◦ : {m : N} {α : Set} {f g : Fin m→ α} →
f $ g→ tabulate f ≡ tabulate g

Then we need to prove that the function f passed to lemma-union-restrict is pointwise
equal to the following function.

λ j→ maybe id (lookup j (tabulate f)) (lookup j (restrict f is))

To do so, we can induct on the list is. For the empty list, we can use lemma-lookup-empty
to see that the second lookup results in nothing. The other lookup is eliminated using
lookup◦tabulate.
In the induction step, we branch on j ?

= i. An equality here means that we are done
with lemma-lookup-insert. The insert call comes from an expansion of fromAscList, which
is called by restrict. An inequality means that we can use the induction hypothesis after
applying lemma-lookup-insert-other.
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5.6 PutGet

For the second theorem from Voigtländer (2009), we need to formulate a precondition on
the definedness of bff. Definedness means that the result of bff is just something. That
argument to just should exist and due to the intuitionistic nature we require it to be
explicitly given.

theorem-2 : {getlen : N→ N} →
(get : {α : Set} → {n : N} → Vec α n→ Vec α (getlen n))→
{n : N} → (s : Vec Carrier n)→ (v : Vec Carrier (getlen n))→
(u : Vec Carrier n)→ bff get s v ≡ just u→ get u ≡ v

The proof can be found in Listing 2 and is explained in the following. We have established
that if a particular assoc call succeeds, then so does bff as lemma-assoc-enough. Here we
need the converse. More precisely, we need to drop the _<$>_ calls on the result of
assoc. Another lemma will facilitate that task.

lemma-<$>-just : {α β : Set} {f : α→ β} {b : β} {ma : Maybe α} →
f <$> ma ≡ just b→ ∃ λ a→ ma ≡ just a

lemma-<$>-just {ma = just x} _ = x , refl
lemma-<$>-just {ma = nothing} ()

Since we have two uses of _<$>_ in bff, this lemma is applied twice to arrive at the
return value of the assoc call and the corresponding proof.

The proof then starts using propositional equality. Note that the left hand side indirectly
talks about bff via u. So our first task is to get the u replaced by something containing
bff to be able to reason about it. To that end, we have to temporarily introduce a just
on both sides of the equation. We can get rid of it again, because constructors work
like injective functions. Since the standard library overloads just as well, we need to
disambiguate it.

just-injective : {α : Set} → {x y : α} → (justMaybe x) ≡ (justMaybe y)→ x ≡ y
just-injective refl = refl

With just-injective applied, we can reason about just (get u). Our first step is to replace u
with the bff call using p. We are not that interested in the embedded assoc call, except for
two properties. One of those properties is that assoc succeeds. We are using ph to turn
the assoc call into just h. Since we now have a just constructor again, we conclude our
just-injective subproof. The next step is to swap the invocations of get and the mapVec
call from bff using free-theoremVec.

We arrive at a term that looks up all elements from get s′ using the mapping union h g.
This is almost the situation needed for lemma-2, except that it expects the mapping to
be h. We remember that union is left biased, so we want to establish that it can indeed
be dropped. This is successful if all elements being looked up are in the domain of h.
Those elements are the ones in get s′, which is the first list passed to assoc, so we can use
lemma-assoc-domain. We phrase this observation as a new lemma.
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lemma-union-not-used : {m n : N} (h : FinMapMaybe m Carrier)→
(g : FinMap m Carrier)
(is : Vec (Fin m) n)→ (toList is) in-domain-of h→
mapVec just (mapVec (flip lookup (union h g)) is) ≡ mapVec (flip lookup h) is

It can be proven by induction on is and therefore by simultaneous reduction of the domain
property. Note that the lookup calls on the left hand side give elements of Carrier whereas
the lookup calls on the right hand side give elements of Maybe Carrier. That is why the
left hand side has to be wrapped in a mapVec just. As in the use of just-injective, we have
to temporarily introduce these constructors. This time they do not appear outside the
Vec, but within its member type, so we need a different lemma here.

map-just-injective : {α : Set} {n : N} {xs ys : Vec α n} →
mapVec justMaybe xs ≡ mapVec justMaybe ys→ xs ≡ ys

Again, we need to disambiguate just. It can be proven by induction on the implicit
parameters using the fact that _::_ is injective, too. When creating a new subproof
using map-just-injective, the pieces lemma-union-not-used and lemma-2 nicely fit together
to complete the proof of theorem-2.

6 A precondition for bff

The bff we use is only partially defined. As a consequence, the PutGet theorem only holds
when bff is defined. We already know that bff get s v succeeds if assoc (get (enumerate s)) v
succeeds from lemma-assoc-enough. The only way for assoc to go wrong is to have
conflicting associations, which implies that an element in the first parameter is duplicate.
Conversely, assoc will succeed if all elements of the first parameter are pairwise different.
Note that this condition is not inevitable but sufficient.
To phrase this observation in Agda, we first need a notion of membership. Like our

_in-domain-of_ property, membership is not expressed on sets, but on Lists. The standard
library43 defines the Any type to implement it.

data Any {α : Set} (P : α→ Set) : List α→ Set where
here : ∀ {x xs} (px : P x) → Any P (x :: xs)
there : ∀ {x xs} (pxs : Any P xs)→ Any P (x :: xs)

It gives the notion of a parameterized property to be true for any element of a list. The
standard library44 provides type aliases for equality and inequality, which we are interested
in.

_∈_ : {α : Set} → α→ List α→ Set
x ∈ xs = Any (_≡_ x) xs

43Data.List.Any
44Data.List.Any.Membership-≡
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theorem-2 get s v u p with lemma-<$>-just (proj2 (lemma-<$>-just p))
theorem-2 get s v u p | h , ph = let s′ = enumerate s

g = tabulate (denumerate s)
h7→h′ = flip union g
h′ 7→r = flip mapVec s′ ◦ flip lookup

in begin
get u
≡〈 just-injective (begin

get <$> (just u)
≡〈 cong (_<$>_ get) (sym p) 〉

get <$> (bff get s v)
≡〈 cong (_<$>_ get ◦ _<$>_ h′ 7→r ◦ _<$>_ h7→h′) ph 〉

get <$> (h′ 7→r <$> (h7→h′ <$> just h)) �) 〉
get (mapVec (flip lookup (h7→h′ h)) s′)
≡〈 free-theoremVec get (flip lookup (h7→h′ h)) s′ 〉

mapVec (flip lookup (h7→h′ h)) (get s′)
≡〈 map-just-injective (begin

mapVec just (mapVec (flip lookup (union h g)) (get s′))
≡〈 lemma-union-not-used h g (get s′)

(lemma-assoc-domain (get s′) v h ph) 〉
mapVec (flip lookup h) (get s′)
≡〈 lemma-2 (get s′) v h ph 〉

mapVec just v
�) 〉

v �

Listing 2: Proof for theorem-2

_/∈_ : {α : Set} → α→ List α→ Set
x /∈ xs = ¬ (x ∈ xs)

A way to phrase that the elements of a list are pairwise different is to say that no element
is contained in the list that follows it.

data All-different {α : Set} : List α→ Set where
different- [ ] : All-different [ ]
different-:: : {x : α} {xs : List α} →

x /∈ xs→ All-different xs→ All-different (x :: xs)

Note that we cannot phrase this type using All, because the desired property depends on
the tail. We can use it to claim that assoc u v succeeds if All-different (toList u).

different-assoc : {m n : N} → (u : Vec (Fin m) n)→ (v : Vec Carrier n)→
All-different (toList u)→ ∃ λ h→ assoc u v ≡ just h
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We want to prove that all individual checkInsert calls made during assoc are turned into
insert calls. This assertion holds whenever the lookup of the element being inserted results
in nothing. We capture this insight in a trivial lemma which is proven by case splitting
the passed proof.

lemma-checkInsert-new : {m : N} → (i : Fin m)→ (b : Carrier)→
(h : FinMapMaybe m Carrier)→ lookup i h ≡ nothing→
checkInsert i b h ≡ just (insert i b h)

To use it, we need a tool to turn the x /∈ xs proof from different-:: into a lookup i h ≡ nothing.
Unfortunately, we cannot use _in-domain-of_ here since that statement only makes
positive assertions on the domain. Here we need to know that certain elements are not in
the domain of a FinMapMaybe.

lemma-/∈-lookup-assoc : {m n : N} → (i : Fin m)→ (is : Vec (Fin m) n)→
(bs : Vec Carrier n)→ (h : FinMapMaybe m Carrier)→
assoc is bs ≡ just h→ (i /∈ toList is)→ lookup i h ≡ nothing

Assuming it, we can complete the proof of different-assoc by inducing on the passed Vecs.
In the induction step, we put the hypothesis in a with, which directly tells Agda that the
recursive assoc call succeeds. The rest is a composition of the previous lemmata.

different-assoc [ ] [ ] _ = empty , refl
different-assoc (u :: us) (v :: vs) (different-:: u/∈us diff-us)

with different-assoc us vs diff-us
different-assoc (u :: us) (v :: vs) (different-:: u/∈us diff-us)

| h , p = insert u v h , (begin
(assoc us vs >>= checkInsert u v)
≡〈 cong (flip _>>=_ (checkInsert u v)) p 〉

checkInsert u v h
≡〈 lemma-checkInsert-new u v h (lemma-/∈-lookup-assoc u us vs h p u/∈us) 〉

just (insert u v h) �)

Proving the now missing lemma is mostly a matter of inducing on the Vecs passed to
assoc and using previously established techniques. Besides lemma-lookup-empty we need
a variant of lemma-lookup-insert-other.

lemma-lookup-checkInsert-other : {m : N} → (i j : Fin m)→ i 6≡ j→
(b : Carrier)→ (h h′ : FinMapMaybe m Carrier)→ checkInsert j b h ≡ just h′ →
lookup i h ≡ lookup i h′

It can be proven using lemma-lookup-insert-other by putting the involved terms in with.
Then we can actually complete the precondition.

lemma-/∈-lookup-assoc i [ ] [ ] .empty refl i/∈is
= lemma-lookup-empty i
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lemma-/∈-lookup-assoc i (i′ :: is′) (b′ :: bs′) h ph i/∈is
with assoc is′ bs′ | inspect (assoc is′) bs′

lemma-/∈-lookup-assoc i (i′ :: is′) (b′ :: bs′) h () i/∈is
| nothing | [ph′ ]

lemma-/∈-lookup-assoc i (i′ :: is′) (b′ :: bs′) h ph i/∈is
| just h′ | [ph′ ] = begin

lookup i h
≡〈 sym (lemma-lookup-checkInsert-other i i′ (i/∈is ◦ here) b′ h′ h ph) 〉

lookup i h′

≡〈 lemma-/∈-lookup-assoc i is′ bs′ h′ ph′ (i/∈is ◦ there) 〉
nothing �

By combining lemma-assoc-enough and different-assoc, we can see that there are substantial
cases where bff succeeds and theorem-2 is applicable.

7 Conclusion

We succeeded in formalizing the bidirectionalization method and the accompanying
proofs presented by Voigtländer (2009) in Agda. Like the original proof, we assumed the
free-theoremVec. Most of the work went into proving a fair number of auxiliary assertions.
A similar number of assertions could be used from the standard library. Some of our
assertions, such as ::-injective, are general and could be added to the standard library.
The majority is specific to our application though.

Our choice to implement the Eq type class as decidable semantic equality restricts the
applicability of our implementation. On the other hand, this choice cuts down the length
of proofs and was necessary to avoid dealing with types beyond Set. Future work may
investigate the usage of equivalence relations, as provided by the standard library.
An essential part of the proof construction has been to find suitable formulations of

the desired assertions and preconditions. Earlier versions of the whole formalization that
used List everywhere were discarded, because switching to Vec made a few arguments
redundant. For example, the definition of assoc dropped two clauses. Our version of the
union function is another example where the choice of the type matters. Its type requires
that the second parameter is always fully defined and it transfers this property to the
return type. We exploited this assertion in the definition of bff and proofs about it.
The usage of Vec bears a benefit when using bff. Applications of the Haskell bff can

fail when an update changes the length of the list. In contrast, bff rejects such updates
on the type level.
Besides the implementation of bff we reasoned about, Voigtländer (2009) presented

further variants. The second method considers get functions of type Eq a => [a] -> [a].
It uses an adapted checkInsert function that avoids inserting duplicate values. Our
auxiliary assertions about checkInsert cannot be carried over without modification.
Another variant considers data structures other than lists for get to operate on, for

example trees. It may be possible to extend our formalization to this variant retaining
the assertions about checkInsert including the InsertionResult view.
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